Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Aug;109(Suppl 4):579–584. doi: 10.1289/ehp.01109s4579

Airway reflexes, autonomic function, and cardiovascular responses.

J Widdicombe 1, L Y Lee 1
PMCID: PMC1240585  PMID: 11544167

Abstract

In this article, we review the cardiovascular responses to the inhalation of irritants and pollutants. Many sensory receptors in the respiratory system, from nose to alveoli, respond to these irritants and set up powerful reflex changes, including those in the cardiovascular system. Systemic hypotension or hypertension, pulmonary hypertension, bradycardia, tachycardia, and dysrhythmias have all been described previously. Most of the experiments have been acute and have been performed on anesthetized experimental animals. Experiments on humans suggest we have similar sensory systems and reflex responses. However, we must use caution when applying the animal results to humans. Most animal experiments, unlike those with humans, have been performed using general anesthesia, with irritants administered in high concentrations, and often to a restricted part of the respiratory tract. Species differences in the response to irritants are well established. We must be even more careful when applying the results of acute experiments in animals to the pathophysiologic changes observed in prolonged exposure to environmental pollution in humans.

Full Text

The Full Text of this article is available as a PDF (160.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baluk P., Nadel J. A., McDonald D. M. Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol. 1992 May 22;319(4):586–598. doi: 10.1002/cne.903190408. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. J. Neurogenic inflammation in the airways. Respir Physiol. 2001 Mar;125(1-2):145–154. doi: 10.1016/s0034-5687(00)00210-3. [DOI] [PubMed] [Google Scholar]
  3. COLON-YORDAN E., MACKRELL T. N., STONE H. H. An evaluation of the use of thiopental and decamethonium bromide for rapid endotracheal intubation. Anesthesiology. 1953 May;14(3):255–277. doi: 10.1097/00000542-195305000-00005. [DOI] [PubMed] [Google Scholar]
  4. Fox A. J. Modulation of cough and airway sensory fibres. Pulm Pharmacol. 1996 Oct-Dec;9(5-6):335–342. doi: 10.1006/pulp.1996.0044. [DOI] [PubMed] [Google Scholar]
  5. Gold D. R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., Allen G., Verrier M., Cherry R., Verrier R. Ambient pollution and heart rate variability. Circulation. 2000 Mar 21;101(11):1267–1273. doi: 10.1161/01.cir.101.11.1267. [DOI] [PubMed] [Google Scholar]
  6. Ho C. Y., Lee L. Y. Ozone enhances excitabilities of pulmonary C fibers to chemical and mechanical stimuli in anesthetized rats. J Appl Physiol (1985) 1998 Oct;85(4):1509–1515. doi: 10.1152/jappl.1998.85.4.1509. [DOI] [PubMed] [Google Scholar]
  7. Joad J. P., Kott K. S., Bonham A. C. Exposing guinea pigs to ozone for 1 wk enhances responsiveness of rapidly adapting receptors. J Appl Physiol (1985) 1998 Apr;84(4):1190–1197. doi: 10.1152/jappl.1998.84.4.1190. [DOI] [PubMed] [Google Scholar]
  8. Jordan D. Central nervous pathways and control of the airways. Respir Physiol. 2001 Mar;125(1-2):67–81. doi: 10.1016/s0034-5687(00)00205-x. [DOI] [PubMed] [Google Scholar]
  9. Kajekar R., Proud D., Myers A. C., Meeker S. N., Undem B. J. Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea. J Pharmacol Exp Ther. 1999 May;289(2):682–687. [PubMed] [Google Scholar]
  10. Lee L. Y., Morton R. F. Histamine enhances vagal pulmonary C-fiber responses to capsaicin and lung inflation. Respir Physiol. 1993 Jul;93(1):83–96. doi: 10.1016/0034-5687(93)90070-q. [DOI] [PubMed] [Google Scholar]
  11. Lee L. Y., Morton R. F. Pulmonary chemoreflex sensitivity is enhanced by prostaglandin E2 in anesthetized rats. J Appl Physiol (1985) 1995 Nov;79(5):1679–1686. doi: 10.1152/jappl.1995.79.5.1679. [DOI] [PubMed] [Google Scholar]
  12. Lee L. Y., Pisarri T. E. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001 Mar;125(1-2):47–65. doi: 10.1016/s0034-5687(00)00204-8. [DOI] [PubMed] [Google Scholar]
  13. Lee L. Y., Widdicombe J. G. Modulation of airway sensitivity to inhaled irritants: role of inflammatory mediators. Environ Health Perspect. 2001 Aug;109 (Suppl 4):585–589. doi: 10.1289/ehp.01109s4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liao D., Creason J., Shy C., Williams R., Watts R., Zweidinger R. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect. 1999 Jul;107(7):521–525. doi: 10.1289/ehp.99107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Long N. C., Martin J. G., Pantano R., Shore S. A. Airway hyperresponsiveness in a rat model of chronic bronchitis: role of C fibers. Am J Respir Crit Care Med. 1997 Apr;155(4):1222–1229. doi: 10.1164/ajrccm.155.4.9105058. [DOI] [PubMed] [Google Scholar]
  16. Myers A. C. Transmission in autonomic ganglia. Respir Physiol. 2001 Mar;125(1-2):99–111. doi: 10.1016/s0034-5687(00)00207-3. [DOI] [PubMed] [Google Scholar]
  17. Nishino T., Hiraga K., Mizuguchi T., Honda Y. Respiratory reflex responses to stimulation of tracheal mucosa in enflurane-anesthetized humans. J Appl Physiol (1985) 1988 Sep;65(3):1069–1074. doi: 10.1152/jappl.1988.65.3.1069. [DOI] [PubMed] [Google Scholar]
  18. Nishino T., Kochi T., Ishii M. Differences in respiratory reflex responses from the larynx, trachea, and bronchi in anesthetized female subjects. Anesthesiology. 1996 Jan;84(1):70–74. doi: 10.1097/00000542-199601000-00008. [DOI] [PubMed] [Google Scholar]
  19. Nishino T., Tagaito Y., Isono S. Cough and other reflexes on irritation of airway mucosa in man. Pulm Pharmacol. 1996 Oct-Dec;9(5-6):285–292. doi: 10.1006/pulp.1996.0037. [DOI] [PubMed] [Google Scholar]
  20. Pope C. A., 3rd, Verrier R. L., Lovett E. G., Larson A. C., Raizenne M. E., Kanner R. E., Schwartz J., Villegas G. M., Gold D. R., Dockery D. W. Heart rate variability associated with particulate air pollution. Am Heart J. 1999 Nov;138(5 Pt 1):890–899. doi: 10.1016/s0002-8703(99)70014-1. [DOI] [PubMed] [Google Scholar]
  21. Prys-Roberts C., Greene L. T., Meloche R., Foëx P. Studies of anaesthesia in relation to hypertension. II. Haemodynamic consequences of induction and endotracheal intubation. Br J Anaesth. 1971 Jun;43(6):531–547. doi: 10.1093/bja/43.6.531. [DOI] [PubMed] [Google Scholar]
  22. Riccio M. M., Myers A. C., Undem B. J. Immunomodulation of afferent neurons in guinea-pig isolated airway. J Physiol. 1996 Mar 1;491(Pt 2):499–509. doi: 10.1113/jphysiol.1996.sp021234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ricco M. M., Kummer W., Biglari B., Myers A. C., Undem B. J. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol. 1996 Oct 15;496(Pt 2):521–530. doi: 10.1113/jphysiol.1996.sp021703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sant'Ambrogio G., Widdicombe J. Reflexes from airway rapidly adapting receptors. Respir Physiol. 2001 Mar;125(1-2):33–45. doi: 10.1016/s0034-5687(00)00203-6. [DOI] [PubMed] [Google Scholar]
  25. Sekizawa S. I., Tsubone H. Nasal receptors responding to noxious chemical irritants. Respir Physiol. 1994 Apr;96(1):37–48. doi: 10.1016/0034-5687(94)90104-x. [DOI] [PubMed] [Google Scholar]
  26. Sellick H., Widdicombe J. G. Stimulation of lung irritant receptors by cigarette smoke, carbon dust, and histamine aerosol. J Appl Physiol. 1971 Jul;31(1):15–19. doi: 10.1152/jappl.1971.31.1.15. [DOI] [PubMed] [Google Scholar]
  27. Shannon R., Baekey D. M., Morris K. F., Lindsey B. G. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol (1985) 1998 Jun;84(6):2020–2035. doi: 10.1152/jappl.1998.84.6.2020. [DOI] [PubMed] [Google Scholar]
  28. Spina D., Matera G. M., Riccio M. M., Page C. P. A comparison of sensory nerve function in human, guinea-pig, rabbit and marmoset airways. Life Sci. 1998;63(18):1629–1642. doi: 10.1016/s0024-3205(98)00432-9. [DOI] [PubMed] [Google Scholar]
  29. Spina D., Page C. P. Airway sensory nerves in asthma--targets for therapy? Pulm Pharmacol. 1996 Feb;9(1):1–18. doi: 10.1006/pulp.1996.0001. [DOI] [PubMed] [Google Scholar]
  30. Tatar M., Webber S. E., Widdicombe J. G. Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol. 1988 Aug;402:411–420. doi: 10.1113/jphysiol.1988.sp017212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tomori Z., Widdicombe J. G. Muscular, bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract. J Physiol. 1969 Jan;200(1):25–49. doi: 10.1113/jphysiol.1969.sp008680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Undem B. J., McAlexander M., Hunter D. D. Neurobiology of the upper and lower airways. Allergy. 1999;54 (Suppl 57):81–93. doi: 10.1111/j.1398-9995.1999.tb04409.x. [DOI] [PubMed] [Google Scholar]
  33. WIDDICOMBE J. G. Receptors in the trachea and bronchi of the cat. J Physiol. 1954 Jan;123(1):71–104. doi: 10.1113/jphysiol.1954.sp005034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WIDDICOMBE J. G. Receptors in the trachea and bronchi of the cat. J Physiol. 1954 Jan;123(1):71–104. doi: 10.1113/jphysiol.1954.sp005034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Widdicombe J. G. Afferent receptors in the airways and cough. Respir Physiol. 1998 Oct;114(1):5–15. doi: 10.1016/s0034-5687(98)00076-0. [DOI] [PubMed] [Google Scholar]
  36. Widdicombe J. Airway receptors. Respir Physiol. 2001 Mar;125(1-2):3–15. doi: 10.1016/s0034-5687(00)00201-2. [DOI] [PubMed] [Google Scholar]
  37. Widdicombe J. Sensory mechanisms. Pulm Pharmacol. 1996 Oct-Dec;9(5-6):383–387. doi: 10.1006/pulp.1996.0054. [DOI] [PubMed] [Google Scholar]
  38. Widdicombe J. Upper airway reflexes. Curr Opin Pulm Med. 1998 Nov;4(6):376–382. doi: 10.1097/00063198-199811000-00013. [DOI] [PubMed] [Google Scholar]
  39. Zareba W., Nomura A., Couderc J. P. Cardiovascular effects of air pollution: what to measure in ECG? Environ Health Perspect. 2001 Aug;109 (Suppl 4):533–538. doi: 10.1289/ehp.01109s4533. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES