Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Aug;109(Suppl 4):619–622. doi: 10.1289/ehp.01109s4619

Air pollutant-enhanced respiratory disease in experimental animals.

M I Gilmour 1, M Daniels 1, R C McCrillis 1, D Winsett 1, M K Selgrade 1
PMCID: PMC1240592  PMID: 11544174

Abstract

Studies in animals have shown that a wide range of airborne particulates including cigarette smoke, acid aerosols, metals, organic compounds, and combustion products can interfere with the normal defense processes of the lung to enhance susceptibility to respiratory infection or exacerbate allergic diseases. Such detrimental effects are less easy to quantify in humans because of the difficulties in obtaining comprehensive exposure history and health status in large populations and because of the inherent dangers of inducing disease in clinical studies. In this article we describe examples of how air pollutants affect lung disease in experimental animal systems. This information can be used to predict the health risk of simple and complex exposures and to lend insight into the mechanisms of air pollution toxicity.

Full Text

The Full Text of this article is available as a PDF (50.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coffin D. L., Blommer E. J. Acute toxicity of irradiated auto exhaust. Its indication by enhancement of mortality from streptococcal pneumonia. Arch Environ Health. 1967 Jul;15(1):36–38. doi: 10.1080/00039896.1967.10664870. [DOI] [PubMed] [Google Scholar]
  2. Dockery D. W., Pope C. A., 3rd Acute respiratory effects of particulate air pollution. Annu Rev Public Health. 1994;15:107–132. doi: 10.1146/annurev.pu.15.050194.000543. [DOI] [PubMed] [Google Scholar]
  3. Fujimaki H., Nohara O., Ichinose T., Watanabe N., Saito S. IL-4 production in mediastinal lymph node cells in mice intratracheally instilled with diesel exhaust particulates and antigen. Toxicology. 1994 Sep 6;92(1-3):261–268. doi: 10.1016/0300-483x(94)90182-1. [DOI] [PubMed] [Google Scholar]
  4. Gavett S. H., Madison S. L., Stevens M. A., Costa D. L. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice. Am J Respir Crit Care Med. 1999 Dec;160(6):1897–1904. doi: 10.1164/ajrccm.160.6.9901053. [DOI] [PubMed] [Google Scholar]
  5. Gilmour M. I., Park P., Selgrade M. K. Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. The role of alveolar macrophage function and capsular virulence factors. Am Rev Respir Dis. 1993 Mar;147(3):753–760. doi: 10.1164/ajrccm/147.3.753. [DOI] [PubMed] [Google Scholar]
  6. Gilmour M. I., Taylor F. G., Baskerville A., Wathes C. M. The effect of titanium dioxide inhalation on the pulmonary clearance of Pasteurella haemolytica in the mouse. Environ Res. 1989 Oct;50(1):157–172. doi: 10.1016/s0013-9351(89)80055-6. [DOI] [PubMed] [Google Scholar]
  7. Hadnagy W., Seemayer N. H. Inhibition of phagocytosis of human macrophages induced by airborne particulates. Toxicol Lett. 1994 Jun;72(1-3):23–31. doi: 10.1016/0378-4274(94)90006-x. [DOI] [PubMed] [Google Scholar]
  8. Hamada K., Goldsmith C. A., Goldman A., Kobzik L. Resistance of very young mice to inhaled allergen sensitization is overcome by coexposure to an air-pollutant aerosol. Am J Respir Crit Care Med. 2000 Apr;161(4 Pt 1):1285–1293. doi: 10.1164/ajrccm.161.4.9906137. [DOI] [PubMed] [Google Scholar]
  9. Hatch G. E., Boykin E., Graham J. A., Lewtas J., Pott F., Loud K., Mumford J. L. Inhalable particles and pulmonary host defense: in vivo and in vitro effects of ambient air and combustion particles. Environ Res. 1985 Feb;36(1):67–80. doi: 10.1016/0013-9351(85)90008-8. [DOI] [PubMed] [Google Scholar]
  10. Hatch G. E., Slade R., Boykin E., Hu P. C., Miller F. J., Gardner D. E. Correlation of effects of inhaled versus intratracheally injected males on susceptibility to respiratory infection in mice. Am Rev Respir Dis. 1981 Aug;124(2):167–173. doi: 10.1164/arrd.1981.124.2.167. [DOI] [PubMed] [Google Scholar]
  11. Jakab G. J., Risby T. H., Sehnert S. S., Hmieleski R. R., Gilmour M. I. Suppression of alveolar macrophage membrane-receptor-mediated phagocytosis by model particle-adsorbate complexes: physicochemical moderators of uptake. Environ Health Perspect. 1990 Nov;89:169–174. doi: 10.1289/ehp.9089169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lambert A. L., Dong W., Selgrade M. K., Gilmour M. I. Enhanced allergic sensitization by residual oil fly ash particles is mediated by soluble metal constituents. Toxicol Appl Pharmacol. 2000 May 15;165(1):84–93. doi: 10.1006/taap.2000.8932. [DOI] [PubMed] [Google Scholar]
  13. Lambert A. L., Dong W., Winsett D. W., Selgrade M. K., Gilmour M. I. Residual oil fly ash exposure enhances allergic sensitization to house dust mite. Toxicol Appl Pharmacol. 1999 Aug 1;158(3):269–277. doi: 10.1006/taap.1999.8709. [DOI] [PubMed] [Google Scholar]
  14. Lambert A. L., Winsett D. W., Costa D. L., Selgrade M. K., Gilmour M. I. Transfer of allergic airway responses with serum and lymphocytes from rats sensitized to dust mite. Am J Respir Crit Care Med. 1998 Jun;157(6 Pt 1):1991–1999. doi: 10.1164/ajrccm.157.6.9704057. [DOI] [PubMed] [Google Scholar]
  15. Moores H. K., Janigan D. T., Hajela R. P. Lung injury after experimental smoke inhalation: particle-associated changes in alveolar macrophages. Toxicol Pathol. 1993 Nov-Dec;21(6):521–527. doi: 10.1177/019262339302100601. [DOI] [PubMed] [Google Scholar]
  16. Muranaka M., Suzuki S., Koizumi K., Takafuji S., Miyamoto T., Ikemori R., Tokiwa H. Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. J Allergy Clin Immunol. 1986 Apr;77(4):616–623. doi: 10.1016/0091-6749(86)90355-6. [DOI] [PubMed] [Google Scholar]
  17. Nel A. E., Diaz-Sanchez D., Ng D., Hiura T., Saxon A. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):539–554. doi: 10.1016/s0091-6749(98)70269-6. [DOI] [PubMed] [Google Scholar]
  18. Ostro B. The association of air pollution and mortality: examining the case for inference. Arch Environ Health. 1993 Sep-Oct;48(5):336–342. doi: 10.1080/00039896.1993.9936722. [DOI] [PubMed] [Google Scholar]
  19. Rylander R. Pulmonary defence mechanisms to airborne bacteria. Acta Physiol Scand Suppl. 1968;306:1–89. [PubMed] [Google Scholar]
  20. Takafuji S., Suzuki S., Koizumi K., Tadokoro K., Miyamoto T., Ikemori R., Muranaka M. Diesel-exhaust particulates inoculated by the intranasal route have an adjuvant activity for IgE production in mice. J Allergy Clin Immunol. 1987 Apr;79(4):639–645. doi: 10.1016/s0091-6749(87)80161-6. [DOI] [PubMed] [Google Scholar]
  21. Zelikoff J. T., Parsons E., Schlesinger R. B. Inhalation of particulate lead oxide disrupts pulmonary macrophage-mediated functions important for host defense and tumor surveillance in the lung. Environ Res. 1993 Aug;62(2):207–222. doi: 10.1006/enrs.1993.1106. [DOI] [PubMed] [Google Scholar]
  22. Ziegler B., Bhalla D. K., Rasmussen R. E., Kleinman M. T., Menzel D. B. Inhalation of resuspended road dust, but not ammonium nitrate, decreases the expression of the pulmonary macrophage Fc receptor. Toxicol Lett. 1994 May;71(3):197–208. doi: 10.1016/0378-4274(94)90106-6. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES