Abstract
We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing in intensity distinct from a toxicity effect, in attack of fish prey. The data also demonstrated that functional types of Pfiesteria spp. show distinct differences in response to fish, algal prey, and inorganic nutrient enrichment. Collectively, the experiments indicate that NON-IND strains should not be used in research to gain insights about environmental controls on toxic strains of Pfiesteria spp.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burkholder J. M., Marshall H. G., Glasgow H. B., Seaborn D. W., Deamer-Melia N. J. The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states. Environ Health Perspect. 2001 Oct;109 (Suppl 5):745–756. doi: 10.1289/ehp.01109s5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkholder J. M., Noga E. J., Hobbs C. H., Glasgow H. B., Jr, Smith S. A. New 'phantom' dinoflagellate is the causative agent of major estuarine fish kills. Nature. 1992 Jul 30;358(6385):407–410. doi: 10.1038/358407a0. [DOI] [PubMed] [Google Scholar]
- Cachon J., Cachon M. Observations on the mitosis and on the chromosome evolution during the lifecycle of Oodinium, a parasitic dinoflagellate. Chromosoma. 1977 Apr 19;60(3):237–251. doi: 10.1007/BF00329773. [DOI] [PubMed] [Google Scholar]
- Cheng Y. Q., Ahn J. H., Walton J. D. A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity in Cochliobolus carbonum. Microbiology. 1999 Dec;145(Pt 12):3539–3546. doi: 10.1099/00221287-145-12-3539. [DOI] [PubMed] [Google Scholar]
- Glasgow H. B., Jr, Burkholder J. M., Schmechel D. E., Tester P. A., Rublee P. A. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J Toxicol Environ Health. 1995 Dec;46(4):501–522. doi: 10.1080/15287399509532051. [DOI] [PubMed] [Google Scholar]
- Grattan L. M., Oldach D., Perl T. M., Lowitt M. H., Matuszak D. L., Dickson C., Parrott C., Shoemaker R. C., Kauffman C. L., Wasserman M. P. Learning and memory difficulties after environmental exposure to waterways containing toxin-producing Pfiesteria or Pfiesteria-like dinoflagellates. Lancet. 1998 Aug 15;352(9127):532–539. doi: 10.1016/S0140-6736(98)02132-1. [DOI] [PubMed] [Google Scholar]
- Johnston J. S., Bennett M. D., Rayburn A. L., Galbraith D. W., Price H. J. Reference standards for determination of DNA content of plant nuclei. Am J Bot. 1999 May;86(5):609–613. [PubMed] [Google Scholar]
- Kimm-Brinson K. L., Moeller P. D., Barbier M., Glasgow H., Jr, Burkholder J. M., Ramsdell J. S. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect. 2001 May;109(5):457–462. doi: 10.1289/ehp.01109457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levin E. D., Rezvani A. H., Christopher N. C., Glasgow H. B., Jr, Deamer-Melia N. J., Burkholder J. M., Moser V. C., Jensen K. Rapid neurobehavioral analysis of Pfiesteria piscicida effects in juvenile and adult rats. Neurotoxicol Teratol. 2000 Jul-Aug;22(4):533–540. doi: 10.1016/s0892-0362(00)00080-5. [DOI] [PubMed] [Google Scholar]
- Levin E. D., Schmechel D. E., Burkholder J. B., Deamer-Melia N. J., Moser V. C., Harry G. J. Persisting learning deficits in rats after exposure to Pfiesteria piscicida. Environ Health Perspect. 1997 Dec;105(12):1320–1325. doi: 10.1289/ehp.971051320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levin E. D., Simon B. B., Schmechel D. E., Glasgow H. B., Jr, Deamer-Melia N. J., Burkholder J. M., Moser V. C., Jensen K., Harry G. J. Pfiesteria toxin and learning performance. Neurotoxicol Teratol. 1999 May-Jun;21(3):215–221. doi: 10.1016/s0892-0362(98)00041-5. [DOI] [PubMed] [Google Scholar]
- Marshall HG, Gordon AS, Seaborn DW, Dyer B, Dunstan WM, Seaborn AM. Comparative culture and toxicity studies between the toxic dinoflagellate Pfiesteria piscicida and a morphologically similar cryptoperidiniopsoid dinoflagellate. J Exp Mar Bio Ecol. 2000 Dec 1;255(1):51–74. doi: 10.1016/s0022-0981(00)00288-4. [DOI] [PubMed] [Google Scholar]
- Oldach D. W., Delwiche C. F., Jakobsen K. S., Tengs T., Brown E. G., Kempton J. W., Schaefer E. F., Bowers H. A., Glasgow H. B., Jr, Burkholder J. M. Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4303–4308. doi: 10.1073/pnas.97.8.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson DJ. The Diversity of Eukaryotes. Am Nat. 1999 Oct;154(S4):S96–S124. doi: 10.1086/303287. [DOI] [PubMed] [Google Scholar]
- Samet J., Bignami G. S., Feldman R., Hawkins W., Neff J., Smayda T. Pfiesteria: review of the science and identification of research gaps. Report for the National Center for Environmental Health, Centers for Disease Control and Prevention. Environ Health Perspect. 2001 Oct;109 (Suppl 5):639–659. doi: 10.1289/ehp.01109s5639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soyer M. O. Les ultrastructures nucléaires de la Noctiluque (Dinoflagelleé libre) au cours de la sporogenèse. Chromosoma. 1972;39(4):419–441. doi: 10.1007/BF00326176. [DOI] [PubMed] [Google Scholar]
- Soyer M. O. Structure du noyau des Blastodinium (Dinoflagellés parasites). Division et condensation chromatique. Chromosoma. 1971;33(1):70–114. doi: 10.1007/BF00326385. [DOI] [PubMed] [Google Scholar]
- Zehr J. P., Waterbury J. B., Turner P. J., Montoya J. P., Omoregie E., Steward G. F., Hansen A., Karl D. M. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature. 2001 Aug 9;412(6847):635–638. doi: 10.1038/35088063. [DOI] [PubMed] [Google Scholar]
