Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Oct;109(Suppl 5):715–730. doi: 10.1289/ehp.01109s5715

Field ecology of toxic Pfiesteria complex species and a conservative analysis of their role in estuarine fish kills.

H B Glasgow 1, J M Burkholder 1, M A Mallin 1, N J Deamer-Melia 1, R E Reed 1
PMCID: PMC1240603  PMID: 11677181

Abstract

Within the past decade, toxic Pfiesteria outbreaks have been documented in poorly flushed, eutrophic areas of the largest and second largest estuaries on the U.S. mainland. Here we summarize a decadal field effort in fish kill assessment, encompassing kills related to Pfiesteria (49 major kills in North Carolina estuaries since 1991 and 4 in Maryland estuaries in 1997) and to other factors such as low oxygen stress (79 major fish kills in North Carolina estuaries). The laboratory and field data considered in developing our protocols are described, including toxic Pfiesteria behavior, environmental conditions conducive to toxic Pfiesteria activity, and impacts of toxic clonal Pfiesteria on fish health. We outline the steps of the standardized fish bioassay procedure that has been used since 1991 to diagnose whether actively toxic Pfiesteria was present during estuarine fish kills. Detailed data are given for a 1998 toxic Pfiesteria outbreak in the Neuse Estuary in North Carolina to illustrate of the full suite of diagnostic steps completed. We demonstrate that our conservative approach in implicating toxic Pfiesteria involvement in fish kills has biased in favor of causes other than Pfiesteria. Data are summarized from experiments that have shown stimulation of toxic Pfiesteria strains by nutrient (N, P) enrichment, supporting field observations of highest abundance of toxic strains in eutrophic estuaries. On the basis of a decade of research on toxic Pfiesteria, we present a conceptual model of the seasonal dynamics of toxic strains as affected by changing food resources and weather patterns. We also recommend protocols and research approaches that will strengthen the science of fish kill assessment related to Pfiesteria and/or other causative factors.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akcha F, Izuel C, Venier P, Budzinski H, Burgeot T, Narbonne J. Enzymatic biomarker measurement and study of DNA adduct formation in benzo. Aquat Toxicol. 2000 Jul 1;49(4):269–287. doi: 10.1016/s0166-445x(99)00082-x. [DOI] [PubMed] [Google Scholar]
  2. Burkholder J. M., Glasgow H. B., Deamer-Melia N. J., Springer J., Parrow M. W., Zhang C., Cancellieri P. J. Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation. Environ Health Perspect. 2001 Oct;109 (Suppl 5):667–679. doi: 10.1289/ehp.01109s5667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burkholder J. M., Marshall H. G., Glasgow H. B., Seaborn D. W., Deamer-Melia N. J. The standardized fish bioassay procedure for detecting and culturing actively toxic Pfiesteria, used by two reference laboratories for atlantic and gulf coast states. Environ Health Perspect. 2001 Oct;109 (Suppl 5):745–756. doi: 10.1289/ehp.01109s5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burkholder J. M., Noga E. J., Hobbs C. H., Glasgow H. B., Jr, Smith S. A. New 'phantom' dinoflagellate is the causative agent of major estuarine fish kills. Nature. 1992 Jul 30;358(6385):407–410. doi: 10.1038/358407a0. [DOI] [PubMed] [Google Scholar]
  5. Burkholder J. M. The lurking perils of Pfiesteria. Sci Am. 1999 Aug;281(2):42–49. doi: 10.1038/scientificamerican0899-42. [DOI] [PubMed] [Google Scholar]
  6. Evans A. S. Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med. 1976 May;49(2):175–195. [PMC free article] [PubMed] [Google Scholar]
  7. Fairey E. R., Edmunds J. S., Deamer-Melia N. J., Glasgow H., Jr, Johnson F. M., Moeller P. R., Burkholder J. M., Ramsdell J. S. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida. Environ Health Perspect. 1999 Sep;107(9):711–714. doi: 10.1289/ehp.99107711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glasgow H. B., Jr, Burkholder J. M., Schmechel D. E., Tester P. A., Rublee P. A. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J Toxicol Environ Health. 1995 Dec;46(4):501–522. doi: 10.1080/15287399509532051. [DOI] [PubMed] [Google Scholar]
  9. Grattan L. M., Oldach D., Perl T. M., Lowitt M. H., Matuszak D. L., Dickson C., Parrott C., Shoemaker R. C., Kauffman C. L., Wasserman M. P. Learning and memory difficulties after environmental exposure to waterways containing toxin-producing Pfiesteria or Pfiesteria-like dinoflagellates. Lancet. 1998 Aug 15;352(9127):532–539. doi: 10.1016/S0140-6736(98)02132-1. [DOI] [PubMed] [Google Scholar]
  10. Harden V. A. Koch's postulates and the etiology of AIDS: an historical perspective. Hist Philos Life Sci. 1992;14(2):249–269. [PubMed] [Google Scholar]
  11. Kimm-Brinson K. L., Moeller P. D., Barbier M., Glasgow H., Jr, Burkholder J. M., Ramsdell J. S. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect. 2001 May;109(5):457–462. doi: 10.1289/ehp.01109457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levin E. D., Rezvani A. H., Christopher N. C., Glasgow H. B., Jr, Deamer-Melia N. J., Burkholder J. M., Moser V. C., Jensen K. Rapid neurobehavioral analysis of Pfiesteria piscicida effects in juvenile and adult rats. Neurotoxicol Teratol. 2000 Jul-Aug;22(4):533–540. doi: 10.1016/s0892-0362(00)00080-5. [DOI] [PubMed] [Google Scholar]
  13. Levin E. D., Schmechel D. E., Burkholder J. B., Deamer-Melia N. J., Moser V. C., Harry G. J. Persisting learning deficits in rats after exposure to Pfiesteria piscicida. Environ Health Perspect. 1997 Dec;105(12):1320–1325. doi: 10.1289/ehp.971051320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levin E. D., Simon B. B., Schmechel D. E., Glasgow H. B., Jr, Deamer-Melia N. J., Burkholder J. M., Moser V. C., Jensen K., Harry G. J. Pfiesteria toxin and learning performance. Neurotoxicol Teratol. 1999 May-Jun;21(3):215–221. doi: 10.1016/s0892-0362(98)00041-5. [DOI] [PubMed] [Google Scholar]
  15. Marshall HG, Gordon AS, Seaborn DW, Dyer B, Dunstan WM, Seaborn AM. Comparative culture and toxicity studies between the toxic dinoflagellate Pfiesteria piscicida and a morphologically similar cryptoperidiniopsoid dinoflagellate. J Exp Mar Bio Ecol. 2000 Dec 1;255(1):51–74. doi: 10.1016/s0022-0981(00)00288-4. [DOI] [PubMed] [Google Scholar]
  16. Moeller P. D., Morton S. L., Mitchell B. A., Sivertsen S. K., Fairey E. R., Mikulski T. M., Glasgow H., Deamer-Melia N. J., Burkholder J. M., Ramsdell J. S. Current progress in isolation and characterization of toxins isolated from Pfiesteria piscicida. Environ Health Perspect. 2001 Oct;109 (Suppl 5):739–743. doi: 10.1289/ehp.01109s5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oldach D. W., Delwiche C. F., Jakobsen K. S., Tengs T., Brown E. G., Kempton J. W., Schaefer E. F., Bowers H. A., Glasgow H. B., Jr, Burkholder J. M. Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4303–4308. doi: 10.1073/pnas.97.8.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rublee P. A., Kempton J. W., Schaefer E. F., Allen C., Harris J., Oldach D. W., Bowers H., Tengs T., Burkholder J. M., Glasgow H. B. Use of molecular probes to assess geographic distribution of Pfiesteria species. Environ Health Perspect. 2001 Oct;109 (Suppl 5):765–767. doi: 10.1289/ehp.01109s5765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wannamaker CM, Rice JA. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J Exp Mar Bio Ecol. 2000 Jun 28;249(2):145–163. doi: 10.1016/s0022-0981(00)00160-x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES