Abstract
Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bianchi B. R., Lynch K. J., Touma E., Niforatos W., Burgard E. C., Alexander K. M., Park H. S., Yu H., Metzger R., Kowaluk E. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol. 1999 Jul 2;376(1-2):127–138. doi: 10.1016/s0014-2999(99)00350-7. [DOI] [PubMed] [Google Scholar]
- Buisman H. P., Steinberg T. H., Fischbarg J., Silverstein S. C., Vogelzang S. A., Ince C., Ypey D. L., Leijh P. C. Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7988–7992. doi: 10.1073/pnas.85.21.7988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkholder J. M., Glasgow H. B., Jr Trophic controls on stage transformations of a toxic ambush-predator dinoflagellate. J Eukaryot Microbiol. 1997 May-Jun;44(3):200–205. doi: 10.1111/j.1550-7408.1997.tb05700.x. [DOI] [PubMed] [Google Scholar]
- Burkholder J. M., Noga E. J., Hobbs C. H., Glasgow H. B., Jr, Smith S. A. New 'phantom' dinoflagellate is the causative agent of major estuarine fish kills. Nature. 1992 Jul 30;358(6385):407–410. doi: 10.1038/358407a0. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Development and perspectives of the purinoceptor concept. J Auton Pharmacol. 1996 Dec;16(6):295–302. doi: 10.1111/j.1474-8673.1996.tb00039.x. [DOI] [PubMed] [Google Scholar]
- Burnstock G. P2 purinoceptors: historical perspective and classification. Ciba Found Symp. 1996;198:1–34. doi: 10.1002/9780470514900.ch1. [DOI] [PubMed] [Google Scholar]
- Chen L., Glover J. N., Hogan P. G., Rao A., Harrison S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature. 1998 Mar 5;392(6671):42–48. doi: 10.1038/32100. [DOI] [PubMed] [Google Scholar]
- Coutinho-Silva R., Persechini P. M., Bisaggio R. D., Perfettini J. L., Neto A. C., Kanellopoulos J. M., Motta-Ly I., Dautry-Varsat A., Ojcius D. M. P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol. 1999 May;276(5 Pt 1):C1139–C1147. doi: 10.1152/ajpcell.1999.276.5.C1139. [DOI] [PubMed] [Google Scholar]
- Fairey E. R., Edmunds J. S., Deamer-Melia N. J., Glasgow H., Jr, Johnson F. M., Moeller P. R., Burkholder J. M., Ramsdell J. S. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida. Environ Health Perspect. 1999 Sep;107(9):711–714. doi: 10.1289/ehp.99107711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairey E. R., Ramsdell J. S. Reporter gene assays for algal-derived toxins. Nat Toxins. 1999;7(6):415–421. doi: 10.1002/1522-7189(199911/12)7:6<415::aid-nt81>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Ferrari D., Chiozzi P., Falzoni S., Dal Susino M., Collo G., Buell G., Di Virgilio F. ATP-mediated cytotoxicity in microglial cells. Neuropharmacology. 1997 Sep;36(9):1295–1301. doi: 10.1016/s0028-3908(97)00137-8. [DOI] [PubMed] [Google Scholar]
- Ferrari D., Stroh C., Schulze-Osthoff K. P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem. 1999 May 7;274(19):13205–13210. doi: 10.1074/jbc.274.19.13205. [DOI] [PubMed] [Google Scholar]
- Ferrari D., Wesselborg S., Bauer M. K., Schulze-Osthoff K. Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol. 1997 Dec 29;139(7):1635–1643. doi: 10.1083/jcb.139.7.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glasgow H. B., Jr, Burkholder J. M., Schmechel D. E., Tester P. A., Rublee P. A. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J Toxicol Environ Health. 1995 Dec;46(4):501–522. doi: 10.1080/15287399509532051. [DOI] [PubMed] [Google Scholar]
- Grahames C. B., Michel A. D., Chessell I. P., Humphrey P. P. Pharmacological characterization of ATP- and LPS-induced IL-1beta release in human monocytes. Br J Pharmacol. 1999 Aug;127(8):1915–1921. doi: 10.1038/sj.bjp.0702732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grattan L. M., Oldach D., Perl T. M., Lowitt M. H., Matuszak D. L., Dickson C., Parrott C., Shoemaker R. C., Kauffman C. L., Wasserman M. P. Learning and memory difficulties after environmental exposure to waterways containing toxin-producing Pfiesteria or Pfiesteria-like dinoflagellates. Lancet. 1998 Aug 15;352(9127):532–539. doi: 10.1016/S0140-6736(98)02132-1. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gusovsky F., Daly J. W. Maitotoxin: a unique pharmacological tool for research on calcium-dependent mechanisms. Biochem Pharmacol. 1990 Jun 1;39(11):1633–1639. doi: 10.1016/0006-2952(90)90105-t. [DOI] [PubMed] [Google Scholar]
- Khakh B. S., Bao X. R., Labarca C., Lester H. A. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci. 1999 Apr;2(4):322–330. doi: 10.1038/7233. [DOI] [PubMed] [Google Scholar]
- Kimm-Brinson K. L., Moeller P. D., Barbier M., Glasgow H., Jr, Burkholder J. M., Ramsdell J. S. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect. 2001 May;109(5):457–462. doi: 10.1289/ehp.01109457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKenzie A. B., Surprenant A., North R. A. Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci. 1999 Apr 30;868:716–729. doi: 10.1111/j.1749-6632.1999.tb11351.x. [DOI] [PubMed] [Google Scholar]
- Michel A. D., Chessell I. P., Hibell A. D., Simon J., Humphrey P. P. Identification and characterization of an endogenous P2X7 (P2Z) receptor in CHO-K1 cells. Br J Pharmacol. 1998 Nov;125(6):1194–1201. doi: 10.1038/sj.bjp.0702205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel A. D., Chessell I. P., Humphrey P. P. Ionic effects on human recombinant P2X7 receptor function. Naunyn Schmiedebergs Arch Pharmacol. 1999 Feb;359(2):102–109. doi: 10.1007/pl00005328. [DOI] [PubMed] [Google Scholar]
- Murgia M., Hanau S., Pizzo P., Rippa M., Di Virgilio F. Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem. 1993 Apr 15;268(11):8199–8203. [PubMed] [Google Scholar]
- Nuttle L. C., Dubyak G. R. Differential activation of cation channels and non-selective pores by macrophage P2z purinergic receptors expressed in Xenopus oocytes. J Biol Chem. 1994 May 13;269(19):13988–13996. [PubMed] [Google Scholar]
- Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep;50(3):413–492. [PubMed] [Google Scholar]
- Rassendren F., Buell G. N., Virginio C., Collo G., North R. A., Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem. 1997 Feb 28;272(9):5482–5486. doi: 10.1074/jbc.272.9.5482. [DOI] [PubMed] [Google Scholar]
- Ross P. E., Ehring G. R., Cahalan M. D. Dynamics of ATP-induced calcium signaling in single mouse thymocytes. J Cell Biol. 1997 Sep 8;138(5):987–998. doi: 10.1083/jcb.138.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilling W. P., Sinkins W. G., Estacion M. Maitotoxin activates a nonselective cation channel and a P2Z/P2X(7)-like cytolytic pore in human skin fibroblasts. Am J Physiol. 1999 Oct;277(4 Pt 1):C755–C765. doi: 10.1152/ajpcell.1999.277.4.C755. [DOI] [PubMed] [Google Scholar]
- Schilling W. P., Wasylyna T., Dubyak G. R., Humphreys B. D., Sinkins W. G. Maitotoxin and P2Z/P2X(7) purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol. 1999 Oct;277(4 Pt 1):C766–C776. doi: 10.1152/ajpcell.1999.277.4.C766. [DOI] [PubMed] [Google Scholar]
- Solini A., Chiozzi P., Morelli A., Fellin R., Di Virgilio F. Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci. 1999 Feb;112(Pt 3):297–305. doi: 10.1242/jcs.112.3.297. [DOI] [PubMed] [Google Scholar]
- Sonnenberg J. L., Mitchelmore C., Macgregor-Leon P. F., Hempstead J., Morgan J. I., Curran T. Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. J Neurosci Res. 1989 Sep;24(1):72–80. doi: 10.1002/jnr.490240111. [DOI] [PubMed] [Google Scholar]
- Steinberg T. H., Newman A. S., Swanson J. A., Silverstein S. C. ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem. 1987 Jun 25;262(18):8884–8888. [PubMed] [Google Scholar]
- Surprenant A. Functional properties of native and cloned P2X receptors. Ciba Found Symp. 1996;198:208–222. doi: 10.1002/9780470514900.ch12. [DOI] [PubMed] [Google Scholar]
- Surprenant A., Rassendren F., Kawashima E., North R. A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996 May 3;272(5262):735–738. doi: 10.1126/science.272.5262.735. [DOI] [PubMed] [Google Scholar]
- Virginio C., Church D., North R. A., Surprenant A. Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology. 1997 Sep;36(9):1285–1294. doi: 10.1016/s0028-3908(97)00141-x. [DOI] [PubMed] [Google Scholar]
- Virginio C., MacKenzie A., North R. A., Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol. 1999 Sep 1;519(Pt 2):335–346. doi: 10.1111/j.1469-7793.1999.0335m.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xi D., Van Dolah F. M., Ramsdell J. S. Maitotoxin induces a calcium-dependent membrane depolarization in GH4C1 pituitary cells via activation of type L voltage-dependent calcium channels. J Biol Chem. 1992 Dec 15;267(35):25025–25031. [PubMed] [Google Scholar]
- Young R. C., McLaren M., Ramsdell J. S. Maitotoxin increases voltage independent chloride and sodium currents in GH4C1 rat pituitary cells. Nat Toxins. 1995;3(6):419–427. doi: 10.1002/nt.2620030604. [DOI] [PubMed] [Google Scholar]
- Zoetewij J. P., van de Water B., de Bont H. J., Nagelkerke J. F. The role of a purinergic P2z receptor in calcium-dependent cell killing of isolated rat hepatocytes by extracellular adenosine triphosphate. Hepatology. 1996 Apr;23(4):858–865. doi: 10.1002/hep.510230429. [DOI] [PubMed] [Google Scholar]
