Abstract
In the absence of purified standards of toxins from Pfiesteria species, appropriately conducted fish bioassays are the "gold standard" that must be used to detect toxic strains of Pfiesteria spp. from natural estuarine water or sediment samples and to culture actively toxic Pfiesteria. In this article, we describe the standardized steps of our fish bioassay as an abbreviated term for a procedure that includes two sets of trials with fish, following the Henle-Koch postulates modified for toxic rather than infectious agents. This procedure was developed in 1991, and has been refined over more than 12 years of experience in research with toxic Pfiesteria. The steps involve isolating toxic strains of Pfiesteria (or other potentially, as-yet-undetected, toxic Pfiesteria or Pfiesteria-like species) from fish-killing bioassays with natural samples; growing the clones with axenic algal prey; and retesting the isolates in a second set of fish bioassays. The specific environmental conditions used (e.g., temperature, salinity, light, other factors) must remain flexible, given the wide range of conditions from which natural estuarine samples are derived. We present a comparison of information provided for fish culture conditions, reported in international science journals in which such research is routinely published, and we provide information from more than 2,000 fish bioassays with toxic Pfiesteria, along with recommendations for suitable ranges and frequency of monitoring of environmental variables. We present data demonstrating that algal assays, unlike these standardized fish bioassays, should not be used to detect toxic strains of Pfiesteria spp. Finally, we recommend how quality control/assurance can be most rapidly advanced among laboratories engaged in studies that require research-quality isolates of toxic Pfiesteria spp.
Full Text
The Full Text of this article is available as a PDF (609.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burkholder J. M., Noga E. J., Hobbs C. H., Glasgow H. B., Jr, Smith S. A. New 'phantom' dinoflagellate is the causative agent of major estuarine fish kills. Nature. 1992 Jul 30;358(6385):407–410. doi: 10.1038/358407a0. [DOI] [PubMed] [Google Scholar]
- Evans A. S. Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med. 1976 May;49(2):175–195. [PMC free article] [PubMed] [Google Scholar]
- Fairey E. R., Edmunds J. S., Deamer-Melia N. J., Glasgow H., Jr, Johnson F. M., Moeller P. R., Burkholder J. M., Ramsdell J. S. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida. Environ Health Perspect. 1999 Sep;107(9):711–714. doi: 10.1289/ehp.99107711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glasgow H. B., Burkholder J. M., Mallin M. A., Deamer-Melia N. J., Reed R. E. Field ecology of toxic Pfiesteria complex species and a conservative analysis of their role in estuarine fish kills. Environ Health Perspect. 2001 Oct;109 (Suppl 5):715–730. doi: 10.1289/ehp.01109s5715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glasgow H. B., Jr, Burkholder J. M., Schmechel D. E., Tester P. A., Rublee P. A. Insidious effects of a toxic estuarine dinoflagellate on fish survival and human health. J Toxicol Environ Health. 1995 Dec;46(4):501–522. doi: 10.1080/15287399509532051. [DOI] [PubMed] [Google Scholar]
- Harden V. A. Koch's postulates and the etiology of AIDS: an historical perspective. Hist Philos Life Sci. 1992;14(2):249–269. [PubMed] [Google Scholar]
- Kimm-Brinson K. L., Moeller P. D., Barbier M., Glasgow H., Jr, Burkholder J. M., Ramsdell J. S. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ Health Perspect. 2001 May;109(5):457–462. doi: 10.1289/ehp.01109457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall HG, Gordon AS, Seaborn DW, Dyer B, Dunstan WM, Seaborn AM. Comparative culture and toxicity studies between the toxic dinoflagellate Pfiesteria piscicida and a morphologically similar cryptoperidiniopsoid dinoflagellate. J Exp Mar Bio Ecol. 2000 Dec 1;255(1):51–74. doi: 10.1016/s0022-0981(00)00288-4. [DOI] [PubMed] [Google Scholar]
- Moeller P. D., Morton S. L., Mitchell B. A., Sivertsen S. K., Fairey E. R., Mikulski T. M., Glasgow H., Deamer-Melia N. J., Burkholder J. M., Ramsdell J. S. Current progress in isolation and characterization of toxins isolated from Pfiesteria piscicida. Environ Health Perspect. 2001 Oct;109 (Suppl 5):739–743. doi: 10.1289/ehp.01109s5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldach D. W., Delwiche C. F., Jakobsen K. S., Tengs T., Brown E. G., Kempton J. W., Schaefer E. F., Bowers H. A., Glasgow H. B., Jr, Burkholder J. M. Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4303–4308. doi: 10.1073/pnas.97.8.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers H. S., Backer L. Fish bioassay and toxin induction experiments for research on Pfiesteria piscicida and other toxic dinoflagellates: workshop summary. Environ Health Perspect. 2001 Oct;109 (Suppl 5):769–774. doi: 10.1289/ehp.01109s5769. [DOI] [PMC free article] [PubMed] [Google Scholar]