Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Dec;109(Suppl 6):853–861. doi: 10.1289/ehp.01109s6853

Wildlife as sentinels of human health effects in the Great Lakes--St. Lawrence basin.

G A Fox 1
PMCID: PMC1240620  PMID: 11744503

Abstract

There is no existing formal, long-term program for gathering evidence of the incidence and severity of the health effects of toxic substances in wildlife. However, research-based studies of bald eagles, herring gulls, night herons, tree swallows, snapping turtles, mink, and beluga over the past 30 years have revealed a broad spectrum of health effects in the Great Lakes-St. Lawrence basin including thyroid and other endocrine disorders, metabolic diseases, altered immune function, reproductive impairment, developmental toxicity, genotoxicity, and cancer. These effects occurred most often and were most severe in the most contaminated sites (Green Bay, Saginaw Bay, Lake Ontario, the St. Lawrence estuary, and more recently, Lake Erie), some of which are International Joint Commission-designated Areas of Concern (AOCs). In all cases, a strong argument can be made for an environmental etiology, and in many cases for the involvement of persistent organic pollutants, particularly polychlorinated biphenyls, polychlorinated dibenzo-(italic)p(/italic)-dioxins, and polycyclic aromatic hydrocarbons. For some, the association with particular contaminants is consistent with controlled studies, and in some, dose-response relationships were documented. The biologic significance of these health impairments to the affected species is currently unclear, but they resemble those observed with increased incidence in human subpopulations in one or more AOCs. Formalizing health effects monitoring of sentinel wildlife species by the parties to the Canada-USA Great Lakes Water Quality Agreement is required. This would facilitate the optimal use of sentinel wildlife health data in a larger, epidemiologic weight-of-evidence context upon which to base decisions and policies regarding the effects of chemical exposures on human populations.

Full Text

The Full Text of this article is available as a PDF (542.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Sadinski W., Shugart L., Brussard P., Depledge M., Ford T., Hose J., Stegeman J., Suk W., Wirgin I. Genetic and molecular ecotoxicology: a research framework. Environ Health Perspect. 1994 Dec;102 (Suppl 12):3–8. doi: 10.1289/ehp.94102s123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumann P. C., Harshbarger J. C. Decline in liver neoplasms in wild brown bullhead catfish after coking plant closes and environmental PAHs plummet. Environ Health Perspect. 1995 Feb;103(2):168–170. doi: 10.1289/ehp.95103168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumann P. C., Harshbarger J. C., Hartman K. J. Relationship between liver tumors and age in brown bullhead populations from two Lake Erie tributaries. Sci Total Environ. 1990 May 1;94(1-2):71–87. doi: 10.1016/0048-9697(90)90365-2. [DOI] [PubMed] [Google Scholar]
  4. Bilos C., Colombo J. C., Presa M. J. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina. Environ Pollut. 1998;99(1):1–11. doi: 10.1016/s0269-7491(97)00177-2. [DOI] [PubMed] [Google Scholar]
  5. Bishop C. A., Brooks R. J., Carey J. H., Ng P., Norstrom R. J., Lean D. R. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (Chelydra S.serpentina) from Ontario, Canada. J Toxicol Environ Health. 1991 Aug;33(4):521–547. doi: 10.1080/15287399109531539. [DOI] [PubMed] [Google Scholar]
  6. Bowerman W. W., 4th, Kubiak T. J., Holt J. B., Jr, Evans D. L., Eckstein R. G., Sindelar C. R., Best D. A., Kozie K. D. Observed abnormalities in mandibles of nestling bald eagles Haliaeetus leucocephalus. Bull Environ Contam Toxicol. 1994 Sep;53(3):450–457. doi: 10.1007/BF00197239. [DOI] [PubMed] [Google Scholar]
  7. Bowerman W. W., Giesy J. P., Best D. A., Kramer V. J. A review of factors affecting productivity of bald eagles in the Great Lakes region: implications for recovery. Environ Health Perspect. 1995 May;103 (Suppl 4):51–59. doi: 10.1289/ehp.95103s451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colborn T. Epidemiology of Great Lakes bald eagles. J Toxicol Environ Health. 1991 Aug;33(4):395–453. doi: 10.1080/15287399109531537. [DOI] [PubMed] [Google Scholar]
  9. De Guise S., Lagacé A., Béland P. True hermaphroditism in a St. Lawrence beluga whale (Delphinapterus leucas). J Wildl Dis. 1994 Apr;30(2):287–290. doi: 10.7589/0090-3558-30.2.287. [DOI] [PubMed] [Google Scholar]
  10. De Guise S., Martineau D., Béland P., Fournier M. Possible mechanisms of action of environmental contaminants on St. Lawrence beluga whales (Delphinapterus leucas). Environ Health Perspect. 1995 May;103 (Suppl 4):73–77. doi: 10.1289/ehp.95103s473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilbertson M., Kubiak T., Ludwig J., Fox G. Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonial fish-eating birds: similarity to chick-edema disease. J Toxicol Environ Health. 1991 Aug;33(4):455–520. doi: 10.1080/15287399109531538. [DOI] [PubMed] [Google Scholar]
  12. Gorski J. R., Weber L. W., Rozman K. Reduced gluconeogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats. Arch Toxicol. 1990;64(1):66–71. doi: 10.1007/BF01973379. [DOI] [PubMed] [Google Scholar]
  13. Grasman K. A., Fox G. A. Associations between altered immune function and organochlorine contamination in young Caspian terns (Sterna caspia) from Lake Huron, 1997-1999. Ecotoxicology. 2001 Apr;10(2):101–114. doi: 10.1023/a:1008950025622. [DOI] [PubMed] [Google Scholar]
  14. Grasman K. A., Fox G. A., Scanlon P. F., Ludwig J. P. Organochlorine-associated immunosuppression in prefledgling Caspian terns and herring gulls from the Great Lakes: an ecoepidemiological study. Environ Health Perspect. 1996 Aug;104 (Suppl 4):829–842. doi: 10.1289/ehp.96104s4829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grier J. W. Ban of DDT and subsequent recovery of Reproduction in bald eagles. Science. 1982 Dec 17;218(4578):1232–1235. doi: 10.1126/science.7146905. [DOI] [PubMed] [Google Scholar]
  16. Harding L. E., Harris M. L., Stephen C. R., Elliott J. E. Reproductive and morphological condition of wild mink (Mustela vison) and river otters (Lutra canadensis) in relation to chlorinated hydrocarbon contamination. Environ Health Perspect. 1999 Feb;107(2):141–147. doi: 10.1289/ehp.99107141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harshbarger J. C., Clark J. B. Epizootiology of neoplasms in bony fish of North America. Sci Total Environ. 1990 May 1;94(1-2):1–32. doi: 10.1016/0048-9697(90)90362-x. [DOI] [PubMed] [Google Scholar]
  18. Heaton S. N., Bursian S. J., Giesy J. P., Tillitt D. E., Render J. A., Jones P. D., Verbrugge D. A., Kubiak T. J., Aulerich R. J. Dietary exposure of mink to carp from Saginaw Bay, Michigan. 1. Effects on reproduction and survival, and the potential risks to wild mink populations. Arch Environ Contam Toxicol. 1995 Apr;28(3):334–343. doi: 10.1007/BF00213111. [DOI] [PubMed] [Google Scholar]
  19. Hornshaw T. C., Aulerich R. J., Johnson H. E. Feeding Great Lakes fish to mink: effects on mink and accumulation and elimination of PCBS by mink. J Toxicol Environ Health. 1983 Apr-Jun;11(4-6):933–946. doi: 10.1080/15287398309530396. [DOI] [PubMed] [Google Scholar]
  20. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  21. Kubiak T. J., Harris H. J., Smith L. M., Schwartz T. R., Stalling D. L., Trick J. A., Sileo L., Docherty D. E., Erdman T. C. Microcontaminants and reproductive impairment of the Forster's tern on Green Bay, Lake Michigan--1983. Arch Environ Contam Toxicol. 1989 Sep;18(5):706–727. doi: 10.1007/BF01225009. [DOI] [PubMed] [Google Scholar]
  22. Lair S., Béland P., De Guise S., Martineau D. Adrenal hyperplastic and degenerative changes in beluga whales. J Wildl Dis. 1997 Jul;33(3):430–437. doi: 10.7589/0090-3558-33.3.430. [DOI] [PubMed] [Google Scholar]
  23. Lorenzen A., Moon T. W., Kennedy S. W., Glen G. A. Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos. Environ Health Perspect. 1999 Mar;107(3):179–186. doi: 10.1289/ehp.99107179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mann D. L., Wiley J. P., Powell D. G. Sports injuries in the emergency department: controversies and management guidelines. Can Fam Physician. 1988 Jan;34:133–137. [PMC free article] [PubMed] [Google Scholar]
  25. Martineau D., De Guise S., Fournier M., Shugart L., Girard C., Lagacé A., Béland P. Pathology and toxicology of beluga whales from the St. Lawrence Estuary, Quebec, Canada. Past, present and future. Sci Total Environ. 1994 Sep 16;154(2-3):201–215. doi: 10.1016/0048-9697(94)90088-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moccia R. D., Fox G. A., Britton A. A quantitative assessment of thyroid histopathology of herring gulls (Larus argentatus) from the Great Lakes and a hypothesis on the causal role of environmental contaminants. J Wildl Dis. 1986 Jan;22(1):60–70. doi: 10.7589/0090-3558-22.1.60. [DOI] [PubMed] [Google Scholar]
  27. Moccia R. D., Leatherland J. F., Sonstegard R. A. Quantitative interlake comparison of thyroid pathology in Great Lakes coho (Oncorhynchus kisutch) and chinook (Oncorhynchus tschawytscha) salmon. Cancer Res. 1981 Jun;41(6):2200–2210. [PubMed] [Google Scholar]
  28. Patenaude N. J., Quinn J. S., Beland P., Kingsley M., White B. N. Genetic variation of the St. Lawrence beluga whale population assessed by DNA fingerprinting. Mol Ecol. 1994 Aug;3(4):375–381. doi: 10.1111/j.1365-294x.1994.tb00077.x. [DOI] [PubMed] [Google Scholar]
  29. Poland A., Knutson J. C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
  30. Siegfried L. M. Neoplasms identified in free-flying birds. Avian Dis. 1983 Jan-Mar;27(1):86–99. [PubMed] [Google Scholar]
  31. Sonstegard R. A., Leatherland J. F. Hypothyroidism in rats fed Great Lakes coho salmon. Bull Environ Contam Toxicol. 1979 Aug;22(6):779–784. doi: 10.1007/BF02027024. [DOI] [PubMed] [Google Scholar]
  32. Summer C. L., Giesy J. P., Bursian S. J., Render J. A., Kubiak T. J., Jones P. D., Verbrugge D. A., Aulerich R. J. Effects induced by feeding organochlorine-contaminated carp from Saginaw Bay, Lake Huron, to laying White Leghorn hens. II. Embryotoxic and teratogenic effects. J Toxicol Environ Health. 1996 Nov;49(4):409–438. [PubMed] [Google Scholar]
  33. Swain W. R. Effects of organochlorine chemicals on the reproductive outcome of humans who consumed contaminated Great Lakes fish: an epidemiologic consideration. J Toxicol Environ Health. 1991 Aug;33(4):587–639. doi: 10.1080/15287399109531541. [DOI] [PubMed] [Google Scholar]
  34. Villeneuve D. C., Valli V. E., Norstrom R. J., Freeman H., Sanglang G. B., Ritter L., Becking G. C. Toxicological response of rats fed Lake Ontario or Pacific Coho salmon for 28 days. J Environ Sci Health B. 1981;16(6):649–689. doi: 10.1080/03601238109372287. [DOI] [PubMed] [Google Scholar]
  35. Weber L. W., Lebofsky M., Greim H., Rozman K. Key enzymes of gluconeogenesis are dose-dependently reduced in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats. Arch Toxicol. 1991;65(2):119–123. doi: 10.1007/BF02034937. [DOI] [PubMed] [Google Scholar]
  36. Weisglas-Kuperus N., Patandin S., Berbers G. A., Sas T. C., Mulder P. G., Sauer P. J., Hooijkaas H. Immunologic effects of background exposure to polychlorinated biphenyls and dioxins in Dutch preschool children. Environ Health Perspect. 2000 Dec;108(12):1203–1207. doi: 10.1289/ehp.001081203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wren C. D. Cause-effect linkages between chemicals and populations of mink (Mustela vison) and otter (Lutra canadensis) in the Great Lakes basin. J Toxicol Environ Health. 1991 Aug;33(4):549–585. doi: 10.1080/15287399109531540. [DOI] [PubMed] [Google Scholar]
  38. Yamashita N., Tanabe S., Ludwig J. P., Kurita H., Ludwig M. E., Tatsukawa R. Embryonic abnormalities and organochlorine contamination in double-crested cormorants (Phalacrocorax auritus) and Caspian terns (Hydroprogne caspia) from the upper Great Lakes in 1988. Environ Pollut. 1993;79(2):163–173. doi: 10.1016/0269-7491(93)90066-w. [DOI] [PubMed] [Google Scholar]
  39. Yauk C. L., Fox G. A., McCarry B. E., Quinn J. S. Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res. 2000 Sep 18;452(2):211–218. doi: 10.1016/s0027-5107(00)00093-2. [DOI] [PubMed] [Google Scholar]
  40. de Solla S. R., Bishop C. A., Van der Kraak G., Brooks R. J. Impact of organochlorine contamination on levels of sex hormones and external morphology of common snapping turtles (Chelydra serpentina serpentina) in Ontario, Canada. Environ Health Perspect. 1998 May;106(5):253–260. doi: 10.1289/ehp.98106253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Birgelen A. P., DeVito M. J., Akins J. M., Ross D. G., Diliberto J. J., Birnbaum L. S. Relative potencies of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls derived from hepatic porphyrin accumulation in mice. Toxicol Appl Pharmacol. 1996 May;138(1):98–109. doi: 10.1006/taap.1996.0103. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES