Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 May;109(Suppl 2):283–289. doi: 10.1289/ehp.01109s2283

Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins.

A H Merrill Jr 1, M C Sullards 1, E Wang 1, K A Voss 1, R T Riley 1
PMCID: PMC1240677  PMID: 11359697

Abstract

Sphingolipids have important roles in membrane and lipoprotein structure and in cell regulation as second messengers for growth factors, differentiation factors, cytokines, and a growing list of agonists. Bioactive sphingolipids are formed both by the turnover of complex sphingolipids and as intermediates of sphingolipid biosynthesis. Usually, the amounts are highly regulated; however, by inhibiting ceramide synthase, fumonisins block the biosynthesis of complex sphingolipids and cause sphinganine (and sometimes sphingosine) to accumulate. Where the mechanism has been studied most thoroughly, the accumulation of sphingoid bases is a primary cause of the toxicity of fumonisin B (FB). Nonetheless, the full effects of fumonisins probably involve many biochemical events. The elevations in sphingoid bases also affect the amounts of other lipids, including the 1-phosphates and N-acetyl derivatives of sphinganine. Furthermore, the aminopentol backbone of FB1 (AP1) is both an inhibitor and a substrate for ceramide synthase, and the resultant N-palmitoyl-AP1 (PAP1) is an even more potent inhibitor of ceramide synthase (presumably as a product analog). PAP1 is 10 times more toxic than FB1 or AP1 for HT-29 cells in culture, and hence may play a role in the toxicity of nixtamalized fumonisins. All these processes--the effects of fumonisins on sphingolipid metabolism, the pathways altered by perturbation of sphingolipid metabolism, and the complex cellular behaviors regulated by sphingolipids--must be borne in mind when evaluating the pathologic effects of fumonisins.

Full Text

The Full Text of this article is available as a PDF (525.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aridor-Piterman O., Lavie Y., Liscovitch M. Bimodal distribution of phosphatidic acid phosphohydrolase in NG108-15 cells. Modulation by the amphiphilic lipids oleic acid and sphingosine. Eur J Biochem. 1992 Mar 1;204(2):561–568. doi: 10.1111/j.1432-1033.1992.tb16668.x. [DOI] [PubMed] [Google Scholar]
  2. Bose R., Verheij M., Haimovitz-Friedman A., Scotto K., Fuks Z., Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995 Aug 11;82(3):405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  3. Cabot M. C., Giuliano A. E., Han T. Y., Liu Y. Y. SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res. 1999 Feb 15;59(4):880–885. [PubMed] [Google Scholar]
  4. Coleman R. A., Wang P., Bhat B. G. Fatty acids and anionic phospholipids alter the palmitoyl coenzyme A kinetics of hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles. Biochemistry. 1996 Jul 23;35(29):9576–9583. doi: 10.1021/bi9602167. [DOI] [PubMed] [Google Scholar]
  5. Conzelmann A., Puoti A., Lester R. L., Desponds C. Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccharomyces cerevisiae. EMBO J. 1992 Feb;11(2):457–466. doi: 10.1002/j.1460-2075.1992.tb05075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuvillier O., Rosenthal D. S., Smulson M. E., Spiegel S. Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem. 1998 Jan 30;273(5):2910–2916. doi: 10.1074/jbc.273.5.2910. [DOI] [PubMed] [Google Scholar]
  7. Desai N. N., Zhang H., Olivera A., Mattie M. E., Spiegel S. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J Biol Chem. 1992 Nov 15;267(32):23122–23128. [PubMed] [Google Scholar]
  8. Dickson R. C., Lester R. L. Yeast sphingolipids. Biochim Biophys Acta. 1999 Jan 6;1426(2):347–357. doi: 10.1016/s0304-4165(98)00135-4. [DOI] [PubMed] [Google Scholar]
  9. Fantini J., Hammache D., Delézay O., Yahi N., André-Barrès C., Rico-Lattes I., Lattes A. Synthetic soluble analogs of galactosylceramide (GalCer) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry. J Biol Chem. 1997 Mar 14;272(11):7245–7252. doi: 10.1074/jbc.272.11.7245. [DOI] [PubMed] [Google Scholar]
  10. Hakomori S., Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem. 1995 Dec;118(6):1091–1103. doi: 10.1093/oxfordjournals.jbchem.a124992. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
  12. Humpf H. U., Schmelz E. M., Meredith F. I., Vesper H., Vales T. R., Wang E., Menaldino D. S., Liotta D. C., Merrill A. H., Jr Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase. Formation of N-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, AP1, and a new category of ceramide synthase inhibitor. J Biol Chem. 1998 Jul 24;273(30):19060–19064. doi: 10.1074/jbc.273.30.19060. [DOI] [PubMed] [Google Scholar]
  13. Iwabuchi K., Handa K., Hakomori S. Separation of "glycosphingolipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem. 1998 Dec 11;273(50):33766–33773. doi: 10.1074/jbc.273.50.33766. [DOI] [PubMed] [Google Scholar]
  14. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  15. Karlsson K. A. Animal glycolipids as attachment sites for microbes. Chem Phys Lipids. 1986 Dec 15;42(1-3):153–172. doi: 10.1016/0009-3084(86)90050-2. [DOI] [PubMed] [Google Scholar]
  16. Karlsson K. A. On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids. 1970 Oct;5(1):6–43. doi: 10.1016/0009-3084(70)90008-3. [DOI] [PubMed] [Google Scholar]
  17. King C. M., Land S. J., Jones R. F., Debiec-Rychter M., Lee M. S., Wang C. Y. Role of acetyltransferases in the metabolism and carcinogenicity of aromatic amines. Mutat Res. 1997 May 12;376(1-2):123–128. doi: 10.1016/s0027-5107(97)00034-1. [DOI] [PubMed] [Google Scholar]
  18. Kiss Z., Crilly K. S., Rossi M. A., Anderson W. B. Selective inhibition by 4-hydroxynonenal of sphingosine-stimulated phospholipase D in NIH 3T3 cells. Biochim Biophys Acta. 1992 Mar 25;1124(3):300–302. doi: 10.1016/0005-2760(92)90143-j. [DOI] [PubMed] [Google Scholar]
  19. Kolesnick R. N., Krönke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol. 1998;60:643–665. doi: 10.1146/annurev.physiol.60.1.643. [DOI] [PubMed] [Google Scholar]
  20. Lavie Y., Liscovitch M. Activation of phospholipase D by sphingoid bases in NG108-15 neural-derived cells. J Biol Chem. 1990 Mar 5;265(7):3868–3872. [PubMed] [Google Scholar]
  21. Lee T. C., Ou M. C., Shinozaki K., Malone B., Snyder F. Biosynthesis of N-acetylsphingosine by platelet-activating factor: sphingosine CoA-independent transacetylase in HL-60 cels. J Biol Chem. 1996 Jan 5;271(1):209–217. doi: 10.1074/jbc.271.1.209. [DOI] [PubMed] [Google Scholar]
  22. Meredith F. I., Torres O. R., Saenz de Tejada S., Riley R. T., Merrill A. H., Jr Fumonisin B1 and hydrolyzed fumonisin B1 (AP1) in tortillas and nixtamalized corn (Zea mays L.) from two different geographic locations in Guatemala. J Food Prot. 1999 Oct;62(10):1218–1222. doi: 10.4315/0362-028x-62.10.1218. [DOI] [PubMed] [Google Scholar]
  23. Merrill A. H., Jr, Liotta D. C., Riley R. T. Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 1996 Jun;6(6):218–223. doi: 10.1016/0962-8924(96)10021-0. [DOI] [PubMed] [Google Scholar]
  24. Merrill A. H., Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997 Jan;142(1):208–225. doi: 10.1006/taap.1996.8029. [DOI] [PubMed] [Google Scholar]
  25. Merrill A. H., Jr, Wang E. Biosynthesis of long-chain (sphingoid) bases from serine by LM cells. Evidence for introduction of the 4-trans-double bond after de novo biosynthesis of N-acylsphinganine(s). J Biol Chem. 1986 Mar 15;261(8):3764–3769. [PubMed] [Google Scholar]
  26. Merrill A. H., Jr, Wang E., Gilchrist D. G., Riley R. T. Fumonisins and other inhibitors of de novo sphingolipid biosynthesis. Adv Lipid Res. 1993;26:215–234. [PubMed] [Google Scholar]
  27. Merrill A. H., Jr, Wang E., Mullins R. E. Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway. Biochemistry. 1988 Jan 12;27(1):340–345. doi: 10.1021/bi00401a051. [DOI] [PubMed] [Google Scholar]
  28. Merrill A. H., Jr, van Echten G., Wang E., Sandhoff K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem. 1993 Dec 25;268(36):27299–27306. [PubMed] [Google Scholar]
  29. Nikolova-Karakashian M., Morgan E. T., Alexander C., Liotta D. C., Merrill A. H., Jr Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11. J Biol Chem. 1997 Jul 25;272(30):18718–18724. doi: 10.1074/jbc.272.30.18718. [DOI] [PubMed] [Google Scholar]
  30. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  31. Paumen M. B., Ishida Y., Muramatsu M., Yamamoto M., Honjo T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997 Feb 7;272(6):3324–3329. doi: 10.1074/jbc.272.6.3324. [DOI] [PubMed] [Google Scholar]
  32. Perry D. K., Hand W. L., Edmondson D. E., Lambeth J. D. Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol. 1992 Oct 15;149(8):2749–2758. [PubMed] [Google Scholar]
  33. Riboni L., Viani P., Bassi R., Prinetti A., Tettamanti G. The role of sphingolipids in the process of signal transduction. Prog Lipid Res. 1997 Sep;36(2-3):153–195. doi: 10.1016/s0163-7827(97)00008-8. [DOI] [PubMed] [Google Scholar]
  34. Riley R. T., Enongene E., Voss K. A., Norred W. P., Meredith F. I., Sharma R. P., Spitsbergen J., Williams D. E., Carlson D. B., Merrill A. H., Jr Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ Health Perspect. 2001 May;109 (Suppl 2):301–308. doi: 10.1289/ehp.01109s2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Riley R. T., Hinton D. M., Chamberlain W. J., Bacon C. W., Wang E., Merrill A. H., Jr, Voss K. A. Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. J Nutr. 1994 Apr;124(4):594–603. doi: 10.1093/jn/124.4.594. [DOI] [PubMed] [Google Scholar]
  36. Riley R. T., Wang E., Schroeder J. J., Smith E. R., Plattner R. D., Abbas H., Yoo H. S., Merrill A. H., Jr Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins. 1996;4(1):3–15. doi: 10.1002/19960401nt2. [DOI] [PubMed] [Google Scholar]
  37. Schmelz E. M., Dombrink-Kurtzman M. A., Roberts P. C., Kozutsumi Y., Kawasaki T., Merrill A. H., Jr Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol Appl Pharmacol. 1998 Feb;148(2):252–260. doi: 10.1006/taap.1997.8356. [DOI] [PubMed] [Google Scholar]
  38. Smith E. R., Jones P. L., Boss J. M., Merrill A. H., Jr Changing J774A.1 cells to new medium perturbs multiple signaling pathways, including the modulation of protein kinase C by endogenous sphingoid bases. J Biol Chem. 1997 Feb 28;272(9):5640–5646. doi: 10.1074/jbc.272.9.5640. [DOI] [PubMed] [Google Scholar]
  39. Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol. 1999 Mar;65(3):341–344. doi: 10.1002/jlb.65.3.341. [DOI] [PubMed] [Google Scholar]
  40. Stevens V. L., Nimkar S., Jamison W. C., Liotta D. C., Merrill A. H., Jr Characteristics of the growth inhibition and cytotoxicity of long-chain (sphingoid) bases for Chinese hamster ovary cells: evidence for an involvement of protein kinase C. Biochim Biophys Acta. 1990 Jan 23;1051(1):37–45. doi: 10.1016/0167-4889(90)90171-9. [DOI] [PubMed] [Google Scholar]
  41. Stevens V. L., Tang J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J Biol Chem. 1997 Jul 18;272(29):18020–18025. doi: 10.1074/jbc.272.29.18020. [DOI] [PubMed] [Google Scholar]
  42. Sweeney E. A., Inokuchi J., Igarashi Y. Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett. 1998 Mar 20;425(1):61–65. doi: 10.1016/s0014-5793(98)00198-7. [DOI] [PubMed] [Google Scholar]
  43. Tsunoda M., Sharma R. P., Riley R. T. Early fumonisin B1 toxicity in relation to disrupted sphingolipid metabolism in male BALB/c mice. J Biochem Mol Toxicol. 1998;12(5):281–289. doi: 10.1002/(sici)1099-0461(1998)12:5<281::aid-jbt4>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  44. Vesper H., Schmelz E. M., Nikolova-Karakashian M. N., Dillehay D. L., Lynch D. V., Merrill A. H., Jr Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr. 1999 Jul;129(7):1239–1250. doi: 10.1093/jn/129.7.1239. [DOI] [PubMed] [Google Scholar]
  45. Voss K. A., Bacon C. W., Meredith F. I., Norred W. P. Comparative subchronic toxicity studies of nixtamalized and water-extracted Fusarium moniliforme culture material. Food Chem Toxicol. 1996 Jul;34(7):623–632. doi: 10.1016/0278-6915(96)00024-5. [DOI] [PubMed] [Google Scholar]
  46. Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H., Jr Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem. 1991 Aug 5;266(22):14486–14490. [PubMed] [Google Scholar]
  47. Wang E., Riley R. T., Meredith F. I., Merrill A. H., Jr Fumonisin B1 consumption by rats causes reversible, dose-dependent increases in urinary sphinganine and sphingosine. J Nutr. 1999 Jan;129(1):214–220. doi: 10.1093/jn/129.1.214. [DOI] [PubMed] [Google Scholar]
  48. Wang E., Ross P. F., Wilson T. M., Riley R. T., Merrill A. H., Jr Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. J Nutr. 1992 Aug;122(8):1706–1716. doi: 10.1093/jn/122.8.1706. [DOI] [PubMed] [Google Scholar]
  49. Wu W. I., Lin Y. P., Wang E., Merrill A. H., Jr, Carman G. M. Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases. J Biol Chem. 1993 Jul 5;268(19):13830–13837. [PubMed] [Google Scholar]
  50. Wu W. I., McDonough V. M., Nickels J. T., Jr, Ko J., Fischl A. S., Vales T. R., Merrill A. H., Jr, Carman G. M. Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J Biol Chem. 1995 Jun 2;270(22):13171–13178. doi: 10.1074/jbc.270.22.13171. [DOI] [PubMed] [Google Scholar]
  51. Xu J., Yeh C. H., Chen S., He L., Sensi S. L., Canzoniero L. M., Choi D. W., Hsu C. Y. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death. J Biol Chem. 1998 Jun 26;273(26):16521–16526. doi: 10.1074/jbc.273.26.16521. [DOI] [PubMed] [Google Scholar]
  52. Yoo H. S., Norred W. P., Showker J., Riley R. T. Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisin-induced cytotoxicity. Toxicol Appl Pharmacol. 1996 Jun;138(2):211–218. doi: 10.1006/taap.1996.0119. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES