Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 May;109(Suppl 2):321–324. doi: 10.1289/ehp.01109s2321

Factors that affect the occurrence of fumonisin.

J D Miller 1
PMCID: PMC1240682  PMID: 11359702

Abstract

The two important Fusarium ear rots of corn, Gibberella ear rot (Fusarium graminearum, formally F. moniliforme and allied species) and Fusarium ear rot (F. verticillioides and allied species) grow under different environmental conditions. F. graminearum grows well only between 26 and 28 degrees C and requires rain both at silking and during disease progression. F. verticillioides grows well at higher temperatures, and ear rot and fumonisin accumulation are associated with drought and insect stress and growing hybrids outside their areas of adaptation. In southern Transkei, where esophageal cancer has been associated with the consumption of F. verticillioides and fumonisin-contaminated corn, environmental conditions favor this fungus in most years. In the nearby areas where the soils, crops, food consumption, and populations are the same and where esophageal cancer is low, temperatures are cooler and F. graminearum is favored. Although F. verticillioides is associated with a disease of corn, it may be that this fungus is a mutualistic endophyte of the plant. Perhaps because of this, breeding for resistance to Fusarium ear rot has produced inconclusive results to date. The best available strategies for reducing the risk of fumonisin contents of maize are to ensure that hybrids are adapted to the environment and to limit drought stress and insect herbivory. It may also be necessary to make use of alternative strategies such as producing hybrids that contain enzymes to degrade fumonisin as it is produced.

Full Text

The Full Text of this article is available as a PDF (195.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas H. K., Gelderblom W. C., Cawood M. E., Shier W. T. Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.) and mammalian cell cultures. Toxicon. 1993 Mar;31(3):345–353. doi: 10.1016/0041-0101(93)90152-9. [DOI] [PubMed] [Google Scholar]
  2. Alcox R. W., Jameson W. R. Rapid dental x-ray film processor for selected procedures. J Am Dent Assoc. 1969 Mar;78(3):517–519. doi: 10.14219/jada.archive.1969.0123. [DOI] [PubMed] [Google Scholar]
  3. Bacon C. W., Yates I. E., Hinton D. M., Meredith F. Biological control of Fusarium moniliforme in maize. Environ Health Perspect. 2001 May;109 (Suppl 2):325–332. doi: 10.1289/ehp.01109s2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Desjardins A. E., Plattner R. D., Nelson P. E. Fumonisin production and other traits of Fusarium moniliforme strains from maize in northeast Mexico. Appl Environ Microbiol. 1994 May;60(5):1695–1697. doi: 10.1128/aem.60.5.1695-1697.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duvick J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ Health Perspect. 2001 May;109 (Suppl 2):337–342. doi: 10.1289/ehp.01109s2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hidy P. H., Baldwin R. S., Greasham R. L., Keith C. L., McMullen J. R. Zearalenone and some derivatives: production and biological activities. Adv Appl Microbiol. 1977;22:59–82. doi: 10.1016/s0065-2164(08)70160-6. [DOI] [PubMed] [Google Scholar]
  7. Marasas W. F., Jaskiewicz K., Venter F. S., Van Schalkwyk D. J. Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. S Afr Med J. 1988 Aug 6;74(3):110–114. [PubMed] [Google Scholar]
  8. Miller J. D., Savard M. E., Rapior S. Production and purification of fumonisins from a stirred jar fermenter. Nat Toxins. 1994;2(6):354–359. [PubMed] [Google Scholar]
  9. Nelson P. E., Plattner R. D., Shackelford D. D., Desjardins A. E. Fumonisin B1 production by Fusarium species other than F. moniliforme in section Liseola and by some related species. Appl Environ Microbiol. 1992 Mar;58(3):984–989. doi: 10.1128/aem.58.3.984-989.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pitt J. I., Hocking A. D., Bhudhasamai K., Miscamble B. F., Wheeler K. A., Tanboon-Ek P. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int J Food Microbiol. 1993 Dec;20(4):211–226. doi: 10.1016/0168-1605(93)90166-e. [DOI] [PubMed] [Google Scholar]
  11. Proctor R. H., Desjardins A. E., Plattner R. D., Hohn T. M. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol. 1999 Jun;27(1):100–112. doi: 10.1006/fgbi.1999.1141. [DOI] [PubMed] [Google Scholar]
  12. Rheeder J. P., Marasas W. F., Farina M. P., Thompson G. R., Nelson P. E. Soil fertility factors in relation to oesophageal cancer risk areas in Transkei, southern Africa. Eur J Cancer Prev. 1994 Jan;3(1):49–56. doi: 10.1097/00008469-199401000-00007. [DOI] [PubMed] [Google Scholar]
  13. Scott P. M., Kanhere S. R., Lawrence G. A., Daley E. F., Farber J. M. Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Addit Contam. 1995 Jan-Feb;12(1):31–40. doi: 10.1080/02652039509374276. [DOI] [PubMed] [Google Scholar]
  14. Scott P. M., Lawrence G. A. Stability and problems in recovery of fumonisins added to corn-based foods. J AOAC Int. 1994 Mar-Apr;77(2):541–545. [PubMed] [Google Scholar]
  15. Visconti A. Fumonisins in maize genotypes grown in various geographic areas. Adv Exp Med Biol. 1996;392:193–204. doi: 10.1007/978-1-4899-1379-1_17. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES