Abstract
Fumonisins (FB) are mycotoxins found in (italic)Fusarium verticillioides-infected maize grain worldwide. Attention has focused on FBs because of their widespread occurrence, acute toxicity to certain livestock, and their potential carcinogenicity. FBs are present at low levels in most field-grown maize but may spike to high levels depending on both the environment and genetics of the host plant. Among the strategies for reducing risk of FB contamination in maize supplied to the market, development and deployment of Fusarium ear mold-resistant maize germplasm is a high priority. Breeding for increased ear mold tolerance and reduced mycotoxin levels is being practiced today in both commercial and public programs, but the amount of resistance achievable may be limited due to complicated genetics and/or linkage to undesirable agronomic traits. Molecular markers can be employed to speed up the incorporation of chromosomal regions that have a quantitative effect on resistance (quantitative trait loci). Transgenic approaches to ear mold/mycotoxin resistance are now feasible as well. These potentially include genetically enhanced resistance to insect feeding, increased fungal resistance, and detoxification/prevention of mycotoxins in the grain. An example of the first of these approaches is already on the market, namely transgenic maize expressing Bacillus thuringiensis (Bt) toxin, targeted to the European corn borer. Some Bt maize hybrids have the potential to reduce FB levels in field-harvested grain, presumably through reduced feeding of Bt-susceptible insects in ear tissues. However, improved ear mold resistance per se is still an important goal, as the plant will still be vulnerable to noninsect routes of entry to (italic)Fusarium. A second approach, transgene-mediated control of the ability of Fusarium to infect and colonize the ear, could potentially be achieved through overexpression of specific antifungal proteins and metabolites, or enhancement of the plant's own defense systems in kernel tissues. This has not yet been accomplished in maize, although promising results have been obtained recently in other monocots versus other fungal and bacterial pathogens. Achieving reproducible and stable enhanced ear mold resistance under field conditions will be immensely challenging for biotechnologists. A third approach, transgene strategies aimed at preventing mycotoxin biosynthesis, or detoxifying mycotoxins in planta, could provide further protection for the grower in environments where FBs present a risk to the crop even when the maize is relatively resistant to Fusarium mold. In one example of such a strategy, enzymes that degrade FBs have been identified in a filamentous saprophytic fungus isolated from maize, and corresponding genes have been cloned and are currently being tested in transgenic maize.
Full Text
The Full Text of this article is available as a PDF (265.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel P. P., Nelson R. S., De B., Hoffmann N., Rogers S. G., Fraley R. T., Beachy R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986 May 9;232(4751):738–743. doi: 10.1126/science.3457472. [DOI] [PubMed] [Google Scholar]
- Baldwin D., Crane V., Rice D. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol. 1999 Apr;2(2):96–103. doi: 10.1016/S1369-5266(99)80020-X. [DOI] [PubMed] [Google Scholar]
- Bass H. W., OBrian G. R., Boston R. S. Cloning and sequencing of a second ribosome-inactivating protein gene from maize (Zea mays L.). Plant Physiol. 1995 Feb;107(2):661–662. doi: 10.1104/pp.107.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhaskara Reddy M. V., Arul J., Angers P., Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem. 1999 Mar;47(3):1208–1216. doi: 10.1021/jf981225k. [DOI] [PubMed] [Google Scholar]
- Blackwell B. A., Gilliam J. T., Savard M. E., David Miller J., Duvick J. P. Oxidative deamination of hydrolyzed fumonisin B(1) (AP(1)) by cultures of Exophiala spinifera. Nat Toxins. 1999;7(1):31–38. doi: 10.1002/(sici)1522-7189(199902)7:1<31::aid-nt36>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Bullerman L. B. Occurrence of Fusarium and fumonisins on food grains and in foods. Adv Exp Med Biol. 1996;392:27–38. doi: 10.1007/978-1-4899-1379-1_3. [DOI] [PubMed] [Google Scholar]
- Cao H., Li X., Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6531–6536. doi: 10.1073/pnas.95.11.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z. Y., Brown R. L., Lax A. R., Cleveland T. E., Russin J. S. Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Appl Environ Microbiol. 1999 Mar;65(3):1320–1324. doi: 10.1128/aem.65.3.1320-1324.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell. 1999 Jul;11(7):1365–1376. doi: 10.1105/tpc.11.7.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du W., Huang Z., Flaherty J. E., Wells K., Payne G. A. Green fluorescent protein as a reporter to monitor gene expression and food colonization by Aspergillus flavus. Appl Environ Microbiol. 1999 Feb;65(2):834–836. doi: 10.1128/aem.65.2.834-836.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duvick J. P., Rood T., Rao A. G., Marshak D. R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem. 1992 Sep 15;267(26):18814–18820. [PubMed] [Google Scholar]
- Epple P., Apel K., Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell. 1997 Apr;9(4):509–520. doi: 10.1105/tpc.9.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frey M., Chomet P., Glawischnig E., Stettner C., Grün S., Winklmair A., Eisenreich W., Bacher A., Meeley R. B., Briggs S. P. Analysis of a chemical plant defense mechanism in grasses. Science. 1997 Aug 1;277(5326):696–699. doi: 10.1126/science.277.5326.696. [DOI] [PubMed] [Google Scholar]
- Gale M. D., Devos K. M. Plant comparative genetics after 10 years. Science. 1998 Oct 23;282(5389):656–659. doi: 10.1126/science.282.5389.656. [DOI] [PubMed] [Google Scholar]
- Gao A. G., Hakimi S. M., Mittanck C. A., Wu Y., Woerner B. M., Stark D. M., Shah D. M., Liang J., Rommens C. M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000 Dec;18(12):1307–1310. doi: 10.1038/82436. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M., Thomashow M. F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998 Nov;16(4):433–442. doi: 10.1046/j.1365-313x.1998.00310.x. [DOI] [PubMed] [Google Scholar]
- Goto F., Yoshihara T., Shigemoto N., Toki S., Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol. 1999 Mar;17(3):282–286. doi: 10.1038/7029. [DOI] [PubMed] [Google Scholar]
- Guo B. Z., Brown R. L., Lax A. R., Cleveland T. E., Russin J. S., Widstrom N. W. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus. J Food Prot. 1998 Jan;61(1):98–102. doi: 10.4315/0362-028x-61.1.98. [DOI] [PubMed] [Google Scholar]
- Hain R., Reif H. J., Krause E., Langebartels R., Kindl H., Vornam B., Wiese W., Schmelzer E., Schreier P. H., Stöcker R. H. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993 Jan 14;361(6408):153–156. doi: 10.1038/361153a0. [DOI] [PubMed] [Google Scholar]
- Hammond-Kosack Kim E., Jones Jonathan D. G. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):575–607. doi: 10.1146/annurev.arplant.48.1.575. [DOI] [PubMed] [Google Scholar]
- Hutcheson S. W. Current concepts of active defense in plants. Annu Rev Phytopathol. 1998;36:59–90. doi: 10.1146/annurev.phyto.36.1.59. [DOI] [PubMed] [Google Scholar]
- Huynh Q. K., Hironaka C. M., Levine E. B., Smith C. E., Borgmeyer J. R., Shah D. M. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem. 1992 Apr 5;267(10):6635–6640. [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O., Thomashow M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998 Apr 3;280(5360):104–106. doi: 10.1126/science.280.5360.104. [DOI] [PubMed] [Google Scholar]
- Johal G. S., Briggs S. P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science. 1992 Nov 6;258(5084):985–987. doi: 10.1126/science.1359642. [DOI] [PubMed] [Google Scholar]
- Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat Toxins. 1999;7(1):1–23. doi: 10.1002/(sici)1522-7189(199902)7:1<1::aid-nt37>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Martin G. B. Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol. 1999 Aug;2(4):273–279. doi: 10.1016/S1369-5266(99)80049-1. [DOI] [PubMed] [Google Scholar]
- McElroy D. Moving agbiotech downstream. Nat Biotechnol. 1999 Nov;17(11):1071–1074. doi: 10.1038/15054. [DOI] [PubMed] [Google Scholar]
- McGaughey W. H., Gould F., Gelernter W. Bt resistance management. Nat Biotechnol. 1998 Feb;16(2):144–146. doi: 10.1038/nbt0298-144. [DOI] [PubMed] [Google Scholar]
- Meeley R. B., Walton J. D. Enzymatic Detoxification of HC-toxin, the Host-Selective Cyclic Peptide from Cochliobolus carbonum. Plant Physiol. 1991 Nov;97(3):1080–1086. doi: 10.1104/pp.97.3.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merrill A. H., Jr, Wang E., Vales T. R., Smith E. R., Schroeder J. J., Menaldino D. S., Alexander C., Crane H. M., Xia J., Liotta D. C. Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol. 1996;392:297–306. doi: 10.1007/978-1-4899-1379-1_25. [DOI] [PubMed] [Google Scholar]
- Morris S. W., Vernooij B., Titatarn S., Starrett M., Thomas S., Wiltse C. C., Frederiksen R. A., Bhandhufalck A., Hulbert S., Uknes S. Induced resistance responses in maize. Mol Plant Microbe Interact. 1998 Jul;11(7):643–658. doi: 10.1094/MPMI.1998.11.7.643. [DOI] [PubMed] [Google Scholar]
- Murphy P. A., Hendrich S., Hopmans E. C., Hauck C. C., Lu Z., Buseman G., Munkvold G. Effect of processing on fumonisin content of corn. Adv Exp Med Biol. 1996;392:323–334. doi: 10.1007/978-1-4899-1379-1_28. [DOI] [PubMed] [Google Scholar]
- Norton R. A. Inhibition of aflatoxin B(1) biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. J Agric Food Chem. 1999 Mar;47(3):1230–1235. doi: 10.1021/jf980995t. [DOI] [PubMed] [Google Scholar]
- Proctor R. H., Desjardins A. E., Plattner R. D., Hohn T. M. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol. 1999 Jun;27(1):100–112. doi: 10.1006/fgbi.1999.1141. [DOI] [PubMed] [Google Scholar]
- Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y., Hunt M. D. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. doi: 10.1105/tpc.8.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheel D. Resistance response physiology and signal transduction. Curr Opin Plant Biol. 1998 Aug;1(4):305–310. doi: 10.1016/1369-5266(88)80051-7. [DOI] [PubMed] [Google Scholar]
- Shim W. B., Woloshuk C. P. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett. 1999 Aug 1;177(1):109–116. doi: 10.1111/j.1574-6968.1999.tb13720.x. [DOI] [PubMed] [Google Scholar]
- Simons G., Groenendijk J., Wijbrandi J., Reijans M., Groenen J., Diergaarde P., Van der Lee T., Bleeker M., Onstenk J., de Both M. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell. 1998 Jun;10(6):1055–1068. doi: 10.1105/tpc.10.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens C., Bennett M. A., Athanassopoulos E., Tsiamis G., Taylor J. D., Mansfield J. W. Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol Microbiol. 1998 Jul;29(1):165–177. doi: 10.1046/j.1365-2958.1998.00918.x. [DOI] [PubMed] [Google Scholar]
- Tang X., Xie M., Kim Y. J., Zhou J., Klessig D. F., Martin G. B. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell. 1999 Jan;11(1):15–29. doi: 10.1105/tpc.11.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanEtten H. D., Mansfield J. W., Bailey J. A., Farmer E. E. Two Classes of Plant Antibiotics: Phytoalexins versus "Phytoanticipins". Plant Cell. 1994 Sep;6(9):1191–1192. doi: 10.1105/tpc.6.9.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visconti A. Fumonisins in maize genotypes grown in various geographic areas. Adv Exp Med Biol. 1996;392:193–204. doi: 10.1007/978-1-4899-1379-1_17. [DOI] [PubMed] [Google Scholar]
- Warfield C. Y., Gilchrist D. G. Influence of kernel age on fumonisin B1 production in maize by Fusarium moniliforme. Appl Environ Microbiol. 1999 Jul;65(7):2853–2856. doi: 10.1128/aem.65.7.2853-2856.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L., Xu J., Birch R. G. Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol. 1999 Oct;17(10):1021–1024. doi: 10.1038/13721. [DOI] [PubMed] [Google Scholar]