Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jan;110(1):29–36. doi: 10.1289/ehp.0211029

Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts.

Huixiao Hong 1, Weida Tong 1, Hong Fang 1, Leming Shi 1, Qian Xie 1, Jie Wu 1, Roger Perkins 1, John D Walker 1, William Branham 1, Daniel M Sheehan 1
PMCID: PMC1240690  PMID: 11781162

Abstract

A number of environmental chemicals, by mimicking natural hormones, can disrupt endocrine function in experimental animals, wildlife, and humans. These chemicals, called "endocrine-disrupting chemicals" (EDCs), are such a scientific and public concern that screening and testing 58,000 chemicals for EDC activities is now statutorily mandated. Computational chemistry tools are important to biologists because they identify chemicals most important for in vitro and in vivo studies. Here we used a computational approach with integration of two rejection filters, a tree-based model, and three structural alerts to predict and prioritize estrogen receptor (ER) ligands. The models were developed using data for 232 structurally diverse chemicals (training set) with a 10(6) range of relative binding affinities (RBAs); we then validated the models by predicting ER RBAs for 463 chemicals that had ER activity data (testing set). The integrated model gave a lower false negative rate than any single component for both training and testing sets. When the integrated model was applied to approximately 58,000 potential EDCs, 80% (approximately 46,000 chemicals) were predicted to have negligible potential (log RBA < -4.5, with log RBA = 2.0 for estradiol) to bind ER. The ability to process large numbers of chemicals to predict inactivity for ER binding and to categorically prioritize the remainder provides one biologic measure to prioritize chemicals for entry into more expensive assays (most chemicals have no biologic data of any kind). The general approach for predicting ER binding reported here may be applied to other receptors and/or reversible binding mechanisms involved in endocrine disruption.

Full Text

The Full Text of this article is available as a PDF (929.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstead G. M., Carlson K. E., Katzenellenbogen J. A. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids. 1997 Mar;62(3):268–303. doi: 10.1016/s0039-128x(96)00242-5. [DOI] [PubMed] [Google Scholar]
  2. Blair R. M., Fang H., Branham W. S., Hass B. S., Dial S. L., Moland C. L., Tong W., Shi L., Perkins R., Sheehan D. M. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000 Mar;54(1):138–153. doi: 10.1093/toxsci/54.1.138. [DOI] [PubMed] [Google Scholar]
  3. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  4. Clark D. E., Westhead D. R. Evolutionary algorithms in computer-aided molecular design. J Comput Aided Mol Des. 1996 Aug;10(4):337–358. doi: 10.1007/BF00124503. [DOI] [PubMed] [Google Scholar]
  5. Fang H., Tong W., Perkins R., Soto A. M., Prechtl N. V., Sheehan D. M. Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect. 2000 Aug;108(8):723–729. doi: 10.1289/ehp.00108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fang H., Tong W., Shi L. M., Blair R., Perkins R., Branham W., Hass B. S., Xie Q., Dial S. L., Moland C. L. Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol. 2001 Mar;14(3):280–294. doi: 10.1021/tx000208y. [DOI] [PubMed] [Google Scholar]
  7. Forrest S. Genetic algorithms: principles of natural selection applied to computation. Science. 1993 Aug 13;261(5123):872–878. doi: 10.1126/science.8346439. [DOI] [PubMed] [Google Scholar]
  8. Gray L. E., Jr Tiered screening and testing strategy for xenoestrogens and antiandrogens. Toxicol Lett. 1998 Dec 28;102-103:677–680. doi: 10.1016/s0378-4274(98)00287-2. [DOI] [PubMed] [Google Scholar]
  9. Guzelian P. S. Comparative toxicology of chlordecone (Kepone) in humans and experimental animals. Annu Rev Pharmacol Toxicol. 1982;22:89–113. doi: 10.1146/annurev.pa.22.040182.000513. [DOI] [PubMed] [Google Scholar]
  10. Hong H., Neamati N., Wang S., Nicklaus M. C., Mazumder A., Zhao H., Burke T. R., Jr, Pommier Y., Milne G. W. Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem. 1997 Mar 14;40(6):930–936. doi: 10.1021/jm960754h. [DOI] [PubMed] [Google Scholar]
  11. Kavlock R. J., Daston G. P., DeRosa C., Fenner-Crisp P., Gray L. E., Kaattari S., Lucier G., Luster M., Mac M. J., Maczka C. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996 Aug;104 (Suppl 4):715–740. doi: 10.1289/ehp.96104s4715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKim J. M., Jr, Choudhuri S., Wilga P. C., Madan A., Burns-Naas L. A., Gallavan R. H., Mast R. W., Naas D. J., Parkinson A., Meeks R. G. Induction of hepatic xenobiotic metabolizing enzymes in female Fischer-344 rats following repeated inhalation exposure to decamethylcyclopentasiloxane (D5). Toxicol Sci. 1999 Jul;50(1):10–19. doi: 10.1093/toxsci/50.1.10. [DOI] [PubMed] [Google Scholar]
  13. Sadowski J., Kubinyi H. A scoring scheme for discriminating between drugs and nondrugs. J Med Chem. 1998 Aug 27;41(18):3325–3329. doi: 10.1021/jm9706776. [DOI] [PubMed] [Google Scholar]
  14. Shi L. M., Fang H., Tong W., Wu J., Perkins R., Blair R. M., Branham W. S., Dial S. L., Moland C. L., Sheehan D. M. QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci. 2001 Jan-Feb;41(1):186–195. doi: 10.1021/ci000066d. [DOI] [PubMed] [Google Scholar]
  15. Shiau A. K., Barstad D., Loria P. M., Cheng L., Kushner P. J., Agard D. A., Greene G. L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998 Dec 23;95(7):927–937. doi: 10.1016/s0092-8674(00)81717-1. [DOI] [PubMed] [Google Scholar]
  16. Tong W., Lowis D. R., Perkins R., Chen Y., Welsh W. J., Goddette D. W., Heritage T. W., Sheehan D. M. Evaluation of quantitative structure-activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci. 1998 Jul-Aug;38(4):669–677. doi: 10.1021/ci980008g. [DOI] [PubMed] [Google Scholar]
  17. Tong W., Perkins R., Strelitz R., Collantes E. R., Keenan S., Welsh W. J., Branham W. S., Sheehan D. M. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species. Environ Health Perspect. 1997 Oct;105(10):1116–1124. doi: 10.1289/ehp.971051116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tong W., Perkins R., Xing L., Welsh W. J., Sheehan D. M. QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology. 1997 Sep;138(9):4022–4025. doi: 10.1210/endo.138.9.5487. [DOI] [PubMed] [Google Scholar]
  19. Walker J. D. Chemical selection by the Interagency Testing Committee: use of computerized substructure searching to identify chemical groups for health effects, chemical fate and ecological effects testing. Sci Total Environ. 1991 Dec;109-110:691–700. doi: 10.1016/0048-9697(91)90223-2. [DOI] [PubMed] [Google Scholar]
  20. Xing L., Welsh W. J., Tong W., Perkins R., Sheehan D. M. Comparison of estrogen receptor alpha and beta subtypes based on comparative molecular field analysis (CoMFA). SAR QSAR Environ Res. 1999;10(2-3):215–237. doi: 10.1080/10629369908039177. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES