Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jan;110(1):37–42. doi: 10.1289/ehp.0211037

Attenuation of both apoptotic and necrotic actions of cadmium by Bcl-2.

Masami Ishido 1, Rieko Ohtsubo 1, Tatsumi Adachi 1, Manabu Kunimoto 1
PMCID: PMC1240691  PMID: 11781163

Abstract

We examined the effects of cadmium on the bcl-2 family of proteins--bcl-2, bax, bad, and bcl-xS/L--in cadmium-induced cytotoxicity. Addition of 10 microM cadmium to cultured porcine kidney LLC-PK(1) cells caused apoptosis. Western blot analyses revealed that cadmium markedly increased endogenous bcl-2 protein (to 3-4 times the level in wild-type cells) earlier than metallothionein induction, but that the metal did not enhance the induction of bax, bad, or bcl-xS proteins. Cadmium also induced the transcript of bcl-2, with the amount of bcl-2 reaching a maximum at 1-2 hr of exposure; this increase occurred earlier than cadmium-induced increase in the protooncogene such as c-myc. A cadmium-induced increase in endogenous bcl-2 protein was also seen in rat primary thymocytes. Overexpression of the bcl-2 protein by gene transfection prevented cadmium-induced apoptosis. Following the detection of apoptosis, lactate dehydrogenase release in the culture medium (a marker of necrosis) was observed, and this release was also inhibited by overexpression of bcl-2. Electron microscopic observations also supported the fact that cadmium induced apoptotic chromatin condensation at an early stage of exposure, followed by necrotic features of the cells, both of which were also inhibited by overexpression of bcl-2 proteins. Thus, our data demonstrated that both apoptotic and necrotic actions of cadmium were attenuated by bcl-2.

Full Text

The Full Text of this article is available as a PDF (930.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985 Jul;41(3):899–906. doi: 10.1016/s0092-8674(85)80070-2. [DOI] [PubMed] [Google Scholar]
  2. Beyersmann D., Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol. 1997 Jun;144(2):247–261. doi: 10.1006/taap.1997.8125. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Cleary M. L., Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7439–7443. doi: 10.1073/pnas.82.21.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujimaki H., Ishido M., Nohara K. Induction of apoptosis in mouse thymocytes by cadmium. Toxicol Lett. 2000 May 19;115(2):99–105. doi: 10.1016/s0378-4274(00)00178-8. [DOI] [PubMed] [Google Scholar]
  7. Fujimaki H., Murakami M., Kubota K. In vitro evaluation of cadmium-induced augmentation of the antibody response. Toxicol Appl Pharmacol. 1982 Feb;62(2):288–293. doi: 10.1016/0041-008x(82)90127-2. [DOI] [PubMed] [Google Scholar]
  8. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  9. Haecker G., Vaux D. L. Viral, worm and radical implications for apoptosis. Trends Biochem Sci. 1994 Mar;19(3):99–100. doi: 10.1016/0968-0004(94)90197-x. [DOI] [PubMed] [Google Scholar]
  10. Ishido M., Homma-Takeda S., Tohyama C., Suzuki T. Apoptosis in rat renal proximal tubular cells induced by cadmium. J Toxicol Environ Health A. 1998 Sep 11;55(1):1–12. doi: 10.1080/009841098158584. [DOI] [PubMed] [Google Scholar]
  11. Ishido M., Homma S. T., Leung P. S., Tohyama C. Cadmium-induced DNA fragmentation is inhibitable by zinc in porcine kidney LLC-PK1 cells. Life Sci. 1995 Mar 17;56(17):PL351–PL356. doi: 10.1016/0024-3205(95)00100-x. [DOI] [PubMed] [Google Scholar]
  12. Ishido M., Suzuki T., Adachi T., Kunimoto M. Zinc stimulates DNA synthesis during its antiapoptotic action independently with increments of an antiapoptotic protein, Bcl-2, in porcine kidney LLC-PK(1) cells. J Pharmacol Exp Ther. 1999 Aug;290(2):923–928. [PubMed] [Google Scholar]
  13. Ishido M., Tohyama C., Suzuki T. Cadmium-bound metallothionein induces apoptosis in rat kidneys, but not in cultured kidney LLC-PK1 cells. Life Sci. 1999;64(9):797–804. doi: 10.1016/s0024-3205(98)00621-3. [DOI] [PubMed] [Google Scholar]
  14. Ishido M., Tohyama C., Suzuki T. c-myc is not involved in cadmium-elicited apoptotic pathway in porcine kidney LLC-PK1 cells. Life Sci. 1998;63(14):1195–1204. doi: 10.1016/s0024-3205(98)00382-8. [DOI] [PubMed] [Google Scholar]
  15. Jin P., Ringertz N. R. Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts. J Biol Chem. 1990 Aug 25;265(24):14061–14064. [PubMed] [Google Scholar]
  16. Kamada S., Shimono A., Shinto Y., Tsujimura T., Takahashi T., Noda T., Kitamura Y., Kondoh H., Tsujimoto Y. bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res. 1995 Jan 15;55(2):354–359. [PubMed] [Google Scholar]
  17. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Nakayama K., Nakayama K., Negishi I., Kuida K., Sawa H., Loh D. Y. Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3700–3704. doi: 10.1073/pnas.91.9.3700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sato T., Irie S., Krajewski S., Reed J. C. Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene. 1994 Mar 25;140(2):291–292. doi: 10.1016/0378-1119(94)90561-4. [DOI] [PubMed] [Google Scholar]
  21. Shimizu S., Eguchi Y., Kamiike W., Itoh Y., Hasegawa J., Yamabe K., Otsuki Y., Matsuda H., Tsujimoto Y. Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Res. 1996 May 1;56(9):2161–2166. [PubMed] [Google Scholar]
  22. Sorenson C. M., Rogers S. A., Korsmeyer S. J., Hammerman M. R. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995 Jan;268(1 Pt 2):F73–F81. doi: 10.1152/ajprenal.1995.268.1.F73. [DOI] [PubMed] [Google Scholar]
  23. Tanimoto A., Hamada T., Koide O. Cell death and regeneration of renal proximal tubular cells in rats with subchronic cadmium intoxication. Toxicol Pathol. 1993;21(4):341–352. doi: 10.1177/019262339302100401. [DOI] [PubMed] [Google Scholar]
  24. Thévenod F., Friedmann J. M. Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J. 1999 Oct;13(13):1751–1761. doi: 10.1096/fasebj.13.13.1751. [DOI] [PubMed] [Google Scholar]
  25. Thévenod F., Friedmann J. M., Katsen A. D., Hauser I. A. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem. 2000 Jan 21;275(3):1887–1896. doi: 10.1074/jbc.275.3.1887. [DOI] [PubMed] [Google Scholar]
  26. Tsujimoto Y., Cossman J., Jaffe E., Croce C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985 Jun 21;228(4706):1440–1443. doi: 10.1126/science.3874430. [DOI] [PubMed] [Google Scholar]
  27. Vaux D. L., Cory S., Adams J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988 Sep 29;335(6189):440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]
  28. Veis D. J., Sorenson C. M., Shutter J. R., Korsmeyer S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993 Oct 22;75(2):229–240. doi: 10.1016/0092-8674(93)80065-m. [DOI] [PubMed] [Google Scholar]
  29. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES