Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jan;110(1):43–49. doi: 10.1289/ehp.0211043

Air conditioning and source-specific particles as modifiers of the effect of PM(10) on hospital admissions for heart and lung disease.

Nicole A H Janssen 1, Joel Schwartz 1, Antonella Zanobetti 1, Helen H Suh 1
PMCID: PMC1240692  PMID: 11781164

Abstract

Studies on acute effects of particulate matter (PM) air pollution show significant variability in exposure-effect relations among cities. Recent studies have shown an influence of ventilation on personal/indoor-outdoor relations and stronger associations of adverse effects with combustion-related particles. We evaluated whether differences in prevalence of air conditioning (AC) and/or the contribution of different sources to total PM(10) emissions could partly explain the observed variability in exposure-effect relations. We used regression coefficients of the relation between PM(10) and hospital admissions for chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), and pneumonia from a recent study in 14 U.S. cities. We obtained data on the prevalence of AC from the 1993 American Housing Survey and data on PM(10) emissions by source category, vehicle miles traveled (VMT), and population density from the U.S. EPA. We analyzed data using meta-regression techniques. PM(10) regression coefficients for CVD and COPD decreased significantly with increasing percentage of homes with central AC when cities were stratified by whether their PM(10) concentrations peaked in winter or non-winter months. PM(10) coefficients for CVD increased significantly with increasing percentage of PM(10) emission from highway vehicles, highway diesels, oil combustion, metal processing, decreasing percentage of PM(10) emission from fugitive dust, and increasing population density and VMT/mile(2). In multivariate analysis, only percentage of PM(subscript)10(/subscript) from highway vehicles/diesels and oil combustion remained significant. For COPD and pneumonia, associations were less significant but the patterns of the associations were similar to that for CVD. The results suggest that air conditioning and proportion of especially traffic-related particles significantly modify the effect of PM(10) on hospital admissions, especially for CVD.

Full Text

The Full Text of this article is available as a PDF (556.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H. R., Spix C., Medina S., Schouten J. P., Castellsague J., Rossi G., Zmirou D., Touloumi G., Wojtyniak B., Ponka A. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J. 1997 May;10(5):1064–1071. doi: 10.1183/09031936.97.10051064. [DOI] [PubMed] [Google Scholar]
  2. Berkey C. S., Hoaglin D. C., Mosteller F., Colditz G. A. A random-effects regression model for meta-analysis. Stat Med. 1995 Feb 28;14(4):395–411. doi: 10.1002/sim.4780140406. [DOI] [PubMed] [Google Scholar]
  3. Bremner S. A., Anderson H. R., Atkinson R. W., McMichael A. J., Strachan D. P., Bland J. M., Bower J. S. Short-term associations between outdoor air pollution and mortality in London 1992-4. Occup Environ Med. 1999 Apr;56(4):237–244. doi: 10.1136/oem.56.4.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunekreef B., Janssen N. A., de Hartog J., Harssema H., Knape M., van Vliet P. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology. 1997 May;8(3):298–303. doi: 10.1097/00001648-199705000-00012. [DOI] [PubMed] [Google Scholar]
  5. Burnett R. T., Smith-Doiron M., Stieb D., Cakmak S., Brook J. R. Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health. 1999 Mar-Apr;54(2):130–139. doi: 10.1080/00039899909602248. [DOI] [PubMed] [Google Scholar]
  6. Clarke R. W., Coull B., Reinisch U., Catalano P., Killingsworth C. R., Koutrakis P., Kavouras I., Murthy G. G., Lawrence J., Lovett E. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect. 2000 Dec;108(12):1179–1187. doi: 10.1289/ehp.001081179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoek G., Brunekreef B., Verhoeff A., van Wijnen J., Fischer P. Daily mortality and air pollution in The Netherlands. J Air Waste Manag Assoc. 2000 Aug;50(8):1380–1389. doi: 10.1080/10473289.2000.10464182. [DOI] [PubMed] [Google Scholar]
  8. Laden F., Neas L. M., Dockery D. W., Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000 Oct;108(10):941–947. doi: 10.1289/ehp.00108941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levy J. I., Hammitt J. K., Spengler J. D. Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect. 2000 Feb;108(2):109–117. doi: 10.1289/ehp.00108109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Long C. M., Suh H. H., Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc. 2000 Jul;50(7):1236–1250. doi: 10.1080/10473289.2000.10464154. [DOI] [PubMed] [Google Scholar]
  11. Moolgavkar S. H. Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. J Air Waste Manag Assoc. 2000 Jul;50(7):1199–1206. doi: 10.1080/10473289.2000.10464162. [DOI] [PubMed] [Google Scholar]
  12. Moolgavkar S. H., Luebeck E. G., Anderson E. L. Air pollution and hospital admissions for respiratory causes in Minneapolis-St. Paul and Birmingham. Epidemiology. 1997 Jul;8(4):364–370. doi: 10.1097/00001648-199707000-00003. [DOI] [PubMed] [Google Scholar]
  13. Peterson E. W., Howland J. Predicting radon testing among university employees. J Air Waste Manag Assoc. 1996 Jan;46(1):2–11. doi: 10.1080/10473289.1996.10467435. [DOI] [PubMed] [Google Scholar]
  14. Pope C. A., 3rd, Hill R. W., Villegas G. M. Particulate air pollution and daily mortality on Utah's Wasatch Front. Environ Health Perspect. 1999 Jul;107(7):567–573. doi: 10.1289/ehp.99107567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sarnat J. A., Koutrakis P., Suh H. H. Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air Waste Manag Assoc. 2000 Jul;50(7):1184–1198. doi: 10.1080/10473289.2000.10464165. [DOI] [PubMed] [Google Scholar]
  16. Schwartz J., Neas L. M. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology. 2000 Jan;11(1):6–10. doi: 10.1097/00001648-200001000-00004. [DOI] [PubMed] [Google Scholar]
  17. Suh H. H., Koutrakis P., Spengler J. D. The relationship between airborne acidity and ammonia in indoor environments. J Expo Anal Environ Epidemiol. 1994 Jan-Mar;4(1):1–22. [PubMed] [Google Scholar]
  18. Wallace L. Indoor particles: a review. J Air Waste Manag Assoc. 1996 Feb;46(2):98–126. doi: 10.1080/10473289.1996.10467451. [DOI] [PubMed] [Google Scholar]
  19. Zanobetti A., Schwartz J., Dockery D. W. Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environ Health Perspect. 2000 Nov;108(11):1071–1077. doi: 10.1289/ehp.001081071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Vliet P., Knape M., de Hartog J., Janssen N., Harssema H., Brunekreef B. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ Res. 1997;74(2):122–132. doi: 10.1006/enrs.1997.3757. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES