Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jan;110(1):85–93. doi: 10.1289/ehp.0211085

A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment.

Harvey J Clewell 3rd 1, Melvin E Andersen 1, Hugh A Barton 1
PMCID: PMC1240697  PMID: 11781169

Abstract

Physiologically based pharmacokinetic modeling provides important capabilities for improving the reliability of the extrapolations across dose, species, and exposure route that are generally required in chemical risk assessment regardless of the toxic end point being considered. Recently, there has been an increasing focus on harmonization of the cancer and noncancer risk assessment approaches used by regulatory agencies. Although the specific details of applying pharmacokinetic modeling within these two paradigms may differ, it is possible to identify important elements common to both. These elements expand on a four-part framework for describing the development of toxicity: a) exposure, b) tissue dosimetry/pharmacokinetics, c) toxicity process/pharmacodynamics, and d) response. The middle two components constitute the mode of action. In particular, the approach described in this paper provides a common template for incorporating pharmacokinetic modeling to estimate tissue dosimetry into chemical risk assessment, whether for cancer or noncancer end points. Chemical risk assessments typically depend upon comparisons across species that often simplify to ratios reflecting the differences. In this paper we describe the uses of this ratio concept and discuss the advantages of a pharmacokinetic-based approach as compared to the use of default dosimetry.

Full Text

The Full Text of this article is available as a PDF (539.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen B. C., Covington T. R., Clewell H. J. Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform. Toxicology. 1996 Jul 17;111(1-3):289–303. doi: 10.1016/0300-483x(96)03383-5. [DOI] [PubMed] [Google Scholar]
  2. Andersen M. E., Clewell H. J., 3rd, Gargas M. L., Smith F. A., Reitz R. H. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol. 1987 Feb;87(2):185–205. doi: 10.1016/0041-008x(87)90281-x. [DOI] [PubMed] [Google Scholar]
  3. Andersen M. E., Clewell H., 3rd, Krishnan K. Tissue dosimetry, pharmacokinetic modeling, and interspecies scaling factors. Risk Anal. 1995 Aug;15(4):533–537. doi: 10.1111/j.1539-6924.1995.tb00346.x. [DOI] [PubMed] [Google Scholar]
  4. Andersen M. E., MacNaughton M. G., Clewell H. J., 3rd, Paustenbach D. J. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model. Am Ind Hyg Assoc J. 1987 Apr;48(4):335–343. doi: 10.1080/15298668791384850. [DOI] [PubMed] [Google Scholar]
  5. Andersen M. E., Mills J. J., Gargas M. L., Kedderis L., Birnbaum L. S., Neubert D., Greenlee W. F. Modeling receptor-mediated processes with dioxin: implications for pharmacokinetics and risk assessment. Risk Anal. 1993 Feb;13(1):25–36. doi: 10.1111/j.1539-6924.1993.tb00726.x. [DOI] [PubMed] [Google Scholar]
  6. Andersen M. E. Saturable metabolism and its relationship to toxicity. Crit Rev Toxicol. 1981 May;9(2):105–150. doi: 10.3109/10408448109059563. [DOI] [PubMed] [Google Scholar]
  7. Barton H. A., Clewell H. J., 3rd Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment. Environ Health Perspect. 2000 May;108 (Suppl 2):323–334. doi: 10.1289/ehp.00108s2323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benignus V. A., Boyes W. K., Bushnell P. J. A dosimetric analysis of behavioral effects of acute toluene exposure in rats and humans. Toxicol Sci. 1998 Jun;43(2):186–195. doi: 10.1006/toxs.1998.2458. [DOI] [PubMed] [Google Scholar]
  9. Bushnell P. J. Concentration-time relationships for the effects of inhaled trichloroethylene on signal detection behavior in rats. Fundam Appl Toxicol. 1997 Mar;36(1):30–38. doi: 10.1006/faat.1997.2287. [DOI] [PubMed] [Google Scholar]
  10. Clewell H. J., 3rd, Andersen M. E. Biologically motivated models for chemical risk assessment. Health Phys. 1989;57 (Suppl 1):129–137. doi: 10.1097/00004032-198907001-00016. [DOI] [PubMed] [Google Scholar]
  11. Clewell H. J., 3rd, Andersen M. E. Physiologically-based pharmacokinetic modeling and bioactivation of xenobiotics. Toxicol Ind Health. 1994 Jan-Apr;10(1-2):1–24. doi: 10.1177/074823379401000101. [DOI] [PubMed] [Google Scholar]
  12. Clewell H. J., 3rd, Andersen M. E. Risk assessment extrapolations and physiological modeling. Toxicol Ind Health. 1985 Dec;1(4):111–131. doi: 10.1177/074823378500100408. [DOI] [PubMed] [Google Scholar]
  13. Clewell H. J., 3rd, Andersen M. E. Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology. 1996 Jul 17;111(1-3):315–329. doi: 10.1016/0300-483x(96)03385-9. [DOI] [PubMed] [Google Scholar]
  14. Clewell H. J., 3rd, Andersen M. E., Wills R. J., Latriano L. A physiologically based pharmacokinetic model for retinoic acid and its metabolites. J Am Acad Dermatol. 1997 Mar;36(3 Pt 2):S77–S85. doi: 10.1016/s0190-9622(97)70063-x. [DOI] [PubMed] [Google Scholar]
  15. Clewell H. J., 3rd, Gentry P. R., Covington T. R., Gearhart J. M. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect. 2000 May;108 (Suppl 2):283–305. doi: 10.1289/ehp.00108s2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Clewell H. J., 3rd, Gentry P. R., Gearhart J. M. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. J Toxicol Environ Health. 1997 Dec 26;52(6):475–515. doi: 10.1080/00984109708984077. [DOI] [PubMed] [Google Scholar]
  17. Clewell H. J., 3rd Incorporating biological information in quantitative risk assessment: an example with methylene chloride. Toxicology. 1995 Sep 1;102(1-2):83–94. doi: 10.1016/0300-483x(95)03038-h. [DOI] [PubMed] [Google Scholar]
  18. Clewell H. J., 3rd, Jarnot B. M. Incorporation of pharmacokinetics in noncancer risk assessment: example with chloropentafluorobenzene. Risk Anal. 1994 Jun;14(3):265–276. doi: 10.1111/j.1539-6924.1994.tb00241.x. [DOI] [PubMed] [Google Scholar]
  19. Clewell H. J., 3rd The application of physiologically based pharmacokinetic modeling in human health risk assessment of hazardous substances. Toxicol Lett. 1995 Sep;79(1-3):207–217. doi: 10.1016/0378-4274(95)03372-r. [DOI] [PubMed] [Google Scholar]
  20. Clewell H. J., Gentry P. R., Gearhart J. M., Allen B. C., Andersen M. E. Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Sci Total Environ. 2001 Jul 2;274(1-3):37–66. doi: 10.1016/s0048-9697(01)00730-6. [DOI] [PubMed] [Google Scholar]
  21. Conolly R. B., Andersen M. E. Biologically based pharmacodynamic models: tools for toxicological research and risk assessment. Annu Rev Pharmacol Toxicol. 1991;31:503–523. doi: 10.1146/annurev.pa.31.040191.002443. [DOI] [PubMed] [Google Scholar]
  22. Conolly R. B., Kimbell J. S. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models. Toxicol Appl Pharmacol. 1994 Feb;124(2):284–295. doi: 10.1006/taap.1994.1034. [DOI] [PubMed] [Google Scholar]
  23. Corley R. A., Bormett G. A., Ghanayem B. I. Physiologically based pharmacokinetics of 2-butoxyethanol and its major metabolite, 2-butoxyacetic acid, in rats and humans. Toxicol Appl Pharmacol. 1994 Nov;129(1):61–79. doi: 10.1006/taap.1994.1229. [DOI] [PubMed] [Google Scholar]
  24. Crump K. S. A new method for determining allowable daily intakes. Fundam Appl Toxicol. 1984 Oct;4(5):854–871. doi: 10.1016/0272-0590(84)90107-6. [DOI] [PubMed] [Google Scholar]
  25. Crump K. S. An improved procedure for low-dose carcinogenic risk assessment from animal data. J Environ Pathol Toxicol Oncol. 1984 Jul;5(4-5):339–348. [PubMed] [Google Scholar]
  26. Frederick C. B. Limiting the uncertainty in risk assessment by the development of physiologically based pharmacokinetic and pharmacodynamic models. Toxicol Lett. 1993 May;68(1-2):159–175. doi: 10.1016/0378-4274(93)90128-k. [DOI] [PubMed] [Google Scholar]
  27. Frederick C. B., Potter D. W., Chang-Mateu M. I., Andersen M. E. A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicol Appl Pharmacol. 1992 Jun;114(2):246–260. doi: 10.1016/0041-008x(92)90075-4. [DOI] [PubMed] [Google Scholar]
  28. Gargas M. L., Burgess R. J., Voisard D. E., Cason G. H., Andersen M. E. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol. 1989 Mar 15;98(1):87–99. doi: 10.1016/0041-008x(89)90137-3. [DOI] [PubMed] [Google Scholar]
  29. Monro A. What is an appropriate measure of exposure when testing drugs for carcinogenicity in rodents? Toxicol Appl Pharmacol. 1992 Feb;112(2):171–181. doi: 10.1016/0041-008x(92)90185-u. [DOI] [PubMed] [Google Scholar]
  30. Mumtaz M. M., Sipes I. G., Clewell H. J., Yang R. S. Risk assessment of chemical mixtures: biologic and toxicologic issues. Fundam Appl Toxicol. 1993 Oct;21(3):258–269. doi: 10.1006/faat.1993.1098. [DOI] [PubMed] [Google Scholar]
  31. Voisin E. M., Ruthsatz M., Collins J. M., Hoyle P. C. Extrapolation of animal toxicity to humans: interspecies comparisons in drug development. Regul Toxicol Pharmacol. 1990 Oct;12(2):107–116. doi: 10.1016/s0273-2300(05)80052-2. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES