Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Feb;110(2):151–155. doi: 10.1289/ehp.02110151

Effects of exposure to low levels of environmental cadmium on renal biomarkers.

Curtis W Noonan 1, Sara M Sarasua 1, Dave Campagna 1, Steven J Kathman 1, Jeffrey A Lybarger 1, Patricia W Mueller 1
PMCID: PMC1240729  PMID: 11836143

Abstract

We conducted a study among residents of a small community contaminated with heavy metals from a defunct zinc smelter and residents from a comparison community to determine whether biologic measures of cadmium exposure were associated with biomarkers of early kidney damage. Creatinine-adjusted urinary cadmium levels did not differ between the smelter and comparison communities; thus we combined individuals from both communities (n = 361) for further analyses. The overall mean urinary cadmium level was low, 0.26 microg/g creatinine, similar to reference values observed in the U.S. general population. For children ages 6-17 years, urinary concentration of N-acetyl-beta-D-glucosaminidase (NAG), alanine aminopeptidase (AAP), and albumin were positively associated with urinary cadmium, but these associations did not remain statistically significant after adjusting for urinary creatinine and other potential confounders. For adults ages 18 or older, urinary concentration of NAG, AAP, and albumin were positively associated with urinary cadmium. The associations with NAG and AAP but not with albumin remained statistically significant after adjusting for creatinine and other potential confounders. We found a positive dose-effect relationship between levels of creatinine-adjusted urinary cadmium and NAG and AAP activity, and statistically significant differences in mean activity for these two enzymes between the highest (> or =1.0 microg cadmium/g creatinine) and the lowest (< or =0.25 microg cadmium/g creatinine) exposure groups. The findings of this study indicate that biologic measures of cadmium exposure at levels below 2.0 microg/g creatinine may produce measurable changes in kidney biomarkers.

Full Text

The Full Text of this article is available as a PDF (526.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard A., Lauwerys R. Cadmium, NAG activity, and beta 2-microglobulin in the urine of cadmium pigment workers. Br J Ind Med. 1989 Sep;46(9):679–680. doi: 10.1136/oem.46.9.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernard A., Stolte H., De Broe M. E., Mueller P. W., Mason H., Lash L. H., Fowler B. A. Urinary biomarkers to detect significant effects of environmental and occupational exposure to nephrotoxins. IV. Current information on interpreting the health implications of tests. Ren Fail. 1997 Jul;19(4):553–566. doi: 10.3109/08860229709048691. [DOI] [PubMed] [Google Scholar]
  3. Bernard A., Thielemans N., Roels H., Lauwerys R. Association between NAG-B and cadmium in urine with no evidence of a threshold. Occup Environ Med. 1995 Mar;52(3):177–180. doi: 10.1136/oem.52.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chia K. S., Ong C. N., Ong H. Y., Endo G. Renal tubular function of workers exposed to low levels of cadmium. Br J Ind Med. 1989 Mar;46(3):165–170. doi: 10.1136/oem.46.3.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fels L. M., Bundschuh I., Gwinner W., Jung K., Pergande M., Graubaum H. J., Price R. G., Taylor S. A., De Broe M. E., Nuyts G. D. Early urinary markers of target nephron segments as studied in cadmium toxicity. Kidney Int Suppl. 1994 Nov;47:S81–S88. [PubMed] [Google Scholar]
  6. Goren M. P., Wright R. K., Horowitz M. E., Crom W. R., Meyer W. H. Urinary N-acetyl-beta-D-glucosaminidase and serum creatinine concentrations predict impaired excretion of methotrexate. J Clin Oncol. 1987 May;5(5):804–810. doi: 10.1200/JCO.1987.5.5.804. [DOI] [PubMed] [Google Scholar]
  7. Goren M. P., Wright R. K., Horowitz M. E. Cumulative renal tubular damage associated with cisplatin nephrotoxicity. Cancer Chemother Pharmacol. 1986;18(1):69–73. doi: 10.1007/BF00253068. [DOI] [PubMed] [Google Scholar]
  8. Hotz P., Buchet J. P., Bernard A., Lison D., Lauwerys R. Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet. 1999 Oct 30;354(9189):1508–1513. doi: 10.1016/s0140-6736(99)91145-5. [DOI] [PubMed] [Google Scholar]
  9. Iwata K., Saito H., Moriyama M., Nakano A. Renal tubular function after reduction of environmental cadmium exposure: a ten-year follow-up. Arch Environ Health. 1993 May-Jun;48(3):157–163. doi: 10.1080/00039896.1993.9940814. [DOI] [PubMed] [Google Scholar]
  10. Jensen G. E., Christensen J. M., Poulsen O. M. Occupational and environmental exposure to arsenic--increased urinary arsenic level in children. Sci Total Environ. 1991 Sep;107:169–177. doi: 10.1016/0048-9697(91)90258-g. [DOI] [PubMed] [Google Scholar]
  11. Jin T., Nordberg G., Wu X., Ye T., Kong Q., Wang Z., Zhuang F., Cai S. Urinary N-acetyl-beta-D-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ Res. 1999 Aug;81(2):167–173. doi: 10.1006/enrs.1999.3959. [DOI] [PubMed] [Google Scholar]
  12. Jung K., Scholz D. An optimized assay of alanine aminopeptidase activity in urine. Clin Chem. 1980 Aug;26(9):1251–1254. [PubMed] [Google Scholar]
  13. Järup L., Carlsson M. D., Elinder C. G., Hellström L., Persson B., Schütz A. Enzymuria in a population living near a cadmium battery plant. Occup Environ Med. 1995 Nov;52(11):770–772. doi: 10.1136/oem.52.11.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Järup L., Hellström L., Alfvén T., Carlsson M. D., Grubb A., Persson B., Pettersson C., Spång G., Schütz A., Elinder C. G. Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med. 2000 Oct;57(10):668–672. doi: 10.1136/oem.57.10.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawada T., Tohyama C., Suzuki S. Significance of the excretion of urinary indicator proteins for a low level of occupational exposure to cadmium. Int Arch Occup Environ Health. 1990;62(1):95–100. doi: 10.1007/BF00397855. [DOI] [PubMed] [Google Scholar]
  16. Kowal N. E., Zirkes M. Urinary cadmium and beta 2-microglobulin: normal values and concentration adjustment. J Toxicol Environ Health. 1983 Apr-Jun;11(4-6):607–624. doi: 10.1080/15287398309530371. [DOI] [PubMed] [Google Scholar]
  17. LEABACK D. H., WALKER P. G. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochem J. 1961 Jan;78:151–156. doi: 10.1042/bj0780151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lauwerys R. R., Bernard A. M., Roels H. A., Buchet J. P. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem. 1994 Jul;40(7 Pt 2):1391–1394. [PubMed] [Google Scholar]
  19. Lybarger J. A., Lichtveld M. Y., Amler R. W. Biomedical testing of the kidney for persons exposed to hazardous substances in the environment. Ren Fail. 1999 May-Jul;21(3-4):263–274. doi: 10.3109/08860229909085088. [DOI] [PubMed] [Google Scholar]
  20. Mueller P. W., Caudill S. P. Urinary albumin excretion in children: factors related to elevated excretion in the United States population. Ren Fail. 1999 May-Jul;21(3-4):293–302. doi: 10.3109/08860229909085091. [DOI] [PubMed] [Google Scholar]
  21. Mueller P. W. Detecting the renal effects of cadmium toxicity. Clin Chem. 1993 May;39(5):743–745. [PubMed] [Google Scholar]
  22. Mueller P. W., Hall W. D., Caudill S. P., MacNeil M. L., Arepally A. An in-depth examination of the excretion of albumin and other sensitive markers of renal damage in mild hypertension. Am J Hypertens. 1995 Nov;8(11):1072–1082. doi: 10.1016/0895-7061(95)00231-d. [DOI] [PubMed] [Google Scholar]
  23. Mueller P. W., MacNeil M. L., Steinberg K. K. Stabilization of alanine aminopeptidase, gamma glutamyltranspeptidase, and N-acetyl-beta-D-glucosaminidase activity in normal urines. Arch Environ Contam Toxicol. 1986 Jul;15(4):343–347. doi: 10.1007/BF01066400. [DOI] [PubMed] [Google Scholar]
  24. Mueller P. W., Paschal D. C., Hammel R. R., Klincewicz S. L., MacNeil M. L., Spierto B., Steinberg K. K. Chronic renal effects in three studies of men and women occupationally exposed to cadmium. Arch Environ Contam Toxicol. 1992 Jul;23(1):125–136. doi: 10.1007/BF00226005. [DOI] [PubMed] [Google Scholar]
  25. Mueller P. W., Price R. G., Finn W. F. New approaches for detecting thresholds of human nephrotoxicity using cadmium as an example. Environ Health Perspect. 1998 May;106(5):227–230. doi: 10.1289/ehp.98106227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mueller P. W., Smith S. J., Steinberg K. K., Thun M. J. Chronic renal tubular effects in relation to urine cadmium levels. Nephron. 1989;52(1):45–54. doi: 10.1159/000185581. [DOI] [PubMed] [Google Scholar]
  27. Paschal D. C., Burt V., Caudill S. P., Gunter E. W., Pirkle J. L., Sampson E. J., Miller D. T., Jackson R. J. Exposure of the U.S. population aged 6 years and older to cadmium: 1988-1994. Arch Environ Contam Toxicol. 2000 Apr;38(3):377–383. doi: 10.1007/s002449910050. [DOI] [PubMed] [Google Scholar]
  28. Piscator M. Long-term observations on tubular and glomerular function in cadmium-exposed persons. Environ Health Perspect. 1984 Mar;54:175–179. doi: 10.1289/ehp.8454175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pruszkowska E., Carnrick G. R., Slavin W. Direct determination of cadmium in urine with use of a stabilized temperature platform furnace and Zeeman background correction. Clin Chem. 1983 Mar;29(3):477–480. [PubMed] [Google Scholar]
  30. Roels H. A., Lauwerys R. R., Buchet J. P., Bernard A. M., Vos A., Oversteyns M. Health significance of cadmium induced renal dysfunction: a five year follow up. Br J Ind Med. 1989 Nov;46(11):755–764. doi: 10.1136/oem.46.11.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roels H. A., Lauwerys R. R., Buchet J. P., Bernard A. Environmental exposure to cadmium and renal function of aged women in three areas of Belgium. Environ Res. 1981 Feb;24(1):117–130. doi: 10.1016/0013-9351(81)90138-9. [DOI] [PubMed] [Google Scholar]
  32. Roels H. A., Van Assche F. J., Oversteyns M., De Groof M., Lauwerys R. R., Lison D. Reversibility of microproteinuria in cadmium workers with incipient tubular dysfunction after reduction of exposure. Am J Ind Med. 1997 May;31(5):645–652. doi: 10.1002/(sici)1097-0274(199705)31:5<645::aid-ajim21>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  33. Roels H., Bernard A. M., Cárdenas A., Buchet J. P., Lauwerys R. R., Hotter G., Ramis I., Mutti A., Franchini I., Bundschuh I. Markers of early renal changes induced by industrial pollutants. III. Application to workers exposed to cadmium. Br J Ind Med. 1993 Jan;50(1):37–48. doi: 10.1136/oem.50.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roels H., Djubgang J., Buchet J. P., Bernard A., Lauwerys R. Evolution of cadmium-induced renal dysfunction in workers removed from exposure. Scand J Work Environ Health. 1982 Sep;8(3):191–200. doi: 10.5271/sjweh.2476. [DOI] [PubMed] [Google Scholar]
  35. Yamanaka O., Kobayashi E., Nogawa K., Suwazono Y., Sakurada I., Kido T. Association between renal effects and cadmium exposure in cadmium-nonpolluted area in Japan. Environ Res. 1998 Apr;77(1):1–8. doi: 10.1006/enrs.1998.3839. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES