Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Feb;110(2):169–177. doi: 10.1289/ehp.02110169

A novel endocrine-disrupting agent in corn with mitogenic activity in human breast and prostatic cancer cells.

Barry Markaverich 1, Shaila Mani 1, Mary Ann Alejandro 1, Andrea Mitchell 1, David Markaverich 1, Trellis Brown 1, Claudia Velez-Trippe 1, Chris Murchison 1, Bert O'Malley 1, Robert Faith 1
PMCID: PMC1240732  PMID: 11836146

Abstract

Housing adult rats on ground corncob bedding impedes male and female mating behavior and causes acyclicity in females. The suppressive effects on ovarian cyclicity are mimicked by a mitogenic agent purified from the ground corncob bedding material (corn mitogen; CM), which stimulates the proliferation of estrogen receptor (ER)-positive (MCF-7 cells) and ER-negative (MDA-MD-231 cells) breast cancer cells. Purified CM does not compete for [(3)H]estradiol binding to ER or nuclear type II sites, and its effects on MCF-7 breast cancer cell proliferation are not blocked by the antiestrogen ICI-182,780. These results suggest that the active component is unlikely to be a phytoestrogen, bioflavonoid, mycotoxin, or other known endocrine-disrupting agent that modifies cell growth via ER or type II [(3)H]estradiol binding sites. CM also stimulates the proliferation of PC-3 human prostatic cancer cells in vitro, and the growth rate of PC-3 cell xenografts is accelerated in nude male mice housed on ground corncob as opposed to pure cellulose bedding. Consequently, this endocrine-disrupting agent in ground corncob bedding may influence behavioral and physiologic reproductive response profiles and malignant cell proliferation in experimental animals. Fresh corn (kernels and cob) or corn tortillas also contain CM, indicating that human exposure is likely; consequently, CM and/or related mitogens in corn products may influence human health and development.

Full Text

The Full Text of this article is available as a PDF (559.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird D. D., Umbach D. M., Lansdell L., Hughes C. L., Setchell K. D., Weinberg C. R., Haney A. F., Wilcox A. J., Mclachlan J. A. Dietary intervention study to assess estrogenicity of dietary soy among postmenopausal women. J Clin Endocrinol Metab. 1995 May;80(5):1685–1690. doi: 10.1210/jcem.80.5.7745019. [DOI] [PubMed] [Google Scholar]
  2. Brown N. M., Lamartiniere C. A. Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ Health Perspect. 1995 Jul-Aug;103(7-8):708–713. doi: 10.1289/ehp.95103708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cassidy A., Bingham S., Setchell K. D. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr. 1994 Sep;60(3):333–340. doi: 10.1093/ajcn/60.3.333. [DOI] [PubMed] [Google Scholar]
  4. Cassidy A. Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc. 1996 Mar;55(1B):399–417. doi: 10.1079/pns19960038. [DOI] [PubMed] [Google Scholar]
  5. Coopman P., Garcia M., Brünner N., Derocq D., Clarke R., Rochefort H. Anti-proliferative and anti-estrogenic effects of ICI 164,384 and ICI 182,780 in 4-OH-tamoxifen-resistant human breast-cancer cells. Int J Cancer. 1994 Jan 15;56(2):295–300. doi: 10.1002/ijc.2910560225. [DOI] [PubMed] [Google Scholar]
  6. Dran G., Luthy I. A., Molinolo A. A., Montecchia F., Charreau E. H., Pasqualini C. D., Lanari C. Effect of medroxyprogesterone acetate (MPA) and serum factors on cell proliferation in primary cultures of an MPA-induced mammary adenocarcinoma. Breast Cancer Res Treat. 1995 Aug;35(2):173–186. doi: 10.1007/BF00668207. [DOI] [PubMed] [Google Scholar]
  7. Filardo E. J., Quinn J. A., Bland K. I., Frackelton A. R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000 Oct;14(10):1649–1660. doi: 10.1210/mend.14.10.0532. [DOI] [PubMed] [Google Scholar]
  8. Hilakivi-Clarke L., Clarke R., Onojafe I., Raygada M., Cho E., Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9372–9377. doi: 10.1073/pnas.94.17.9372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hull E. M., Bazzett T. J., Warner R. K., Eaton R. C., Thompson J. T. Dopamine receptors in the ventral tegmental area modulate male sexual behavior in rats. Brain Res. 1990 Mar 26;512(1):1–6. doi: 10.1016/0006-8993(90)91162-a. [DOI] [PubMed] [Google Scholar]
  10. Kamboj S. S., Shangary S., Singh J., Kamboj K. K., Sandhu R. S. New lymphocyte stimulating monocot lectins from family Araceae. Immunol Invest. 1995 Aug;24(5):845–855. doi: 10.3109/08820139509060711. [DOI] [PubMed] [Google Scholar]
  11. King C. M. Tamoxifen and the induction of cancer. Carcinogenesis. 1995 Jul;16(7):1449–1454. doi: 10.1093/carcin/16.7.1449. [DOI] [PubMed] [Google Scholar]
  12. Kuiper G. G., Enmark E., Pelto-Huikko M., Nilsson S., Gustafsson J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5925–5930. doi: 10.1073/pnas.93.12.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maher P. A. Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996 Jul;134(2):529–536. doi: 10.1083/jcb.134.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mani S. K., Allen J. M., Clark J. H., Blaustein J. D., O'Malley B. W. Convergent pathways for steroid hormone- and neurotransmitter-induced rat sexual behavior. Science. 1994 Aug 26;265(5176):1246–1249. doi: 10.1126/science.7915049. [DOI] [PubMed] [Google Scholar]
  15. Mani S. K., Blaustein J. D., Allen J. M., Law S. W., O'Malley B. W., Clark J. H. Inhibition of rat sexual behavior by antisense oligonucleotides to the progesterone receptor. Endocrinology. 1994 Oct;135(4):1409–1414. doi: 10.1210/endo.135.4.7925102. [DOI] [PubMed] [Google Scholar]
  16. Markaverich B. M., Alejandro M. A. Type II [3H]estradiol binding site antagonists: inhibition of normal and malignant prostate cell growth and proliferation. Int J Oncol. 1998 May;12(5):1127–1135. doi: 10.3892/ijo.12.5.1127. [DOI] [PubMed] [Google Scholar]
  17. Markaverich B. M., Clark J. H. Two binding sites for estradiol in rat uterine nuclei: relationship to uterotropic response. Endocrinology. 1979 Dec;105(6):1458–1462. doi: 10.1210/endo-105-6-1458. [DOI] [PubMed] [Google Scholar]
  18. Markaverich B. M., Gregory R. R., Alejandro M. A., Clark J. H., Johnson G. A., Middleditch B. S. Methyl p-hydroxyphenyllactate. An inhibitor of cell growth and proliferation and an endogenous ligand for nuclear type-II binding sites. J Biol Chem. 1988 May 25;263(15):7203–7210. [PubMed] [Google Scholar]
  19. Markaverich B. M., Gregory R. R., Alejandro M., Kittrell F. S., Medina D., Clark J. H., Varma M., Varma R. S. Methyl p-hydroxyphenyllactate and nuclear type II binding sites in malignant cells: metabolic fate and mammary tumor growth. Cancer Res. 1990 Mar 1;50(5):1470–1478. [PubMed] [Google Scholar]
  20. Markaverich B. M., Roberts R. R., Alejandro M. A., Johnson G. A., Middleditch B. S., Clark J. H. Bioflavonoid interaction with rat uterine type II binding sites and cell growth inhibition. J Steroid Biochem. 1988;30(1-6):71–78. doi: 10.1016/0022-4731(88)90078-7. [DOI] [PubMed] [Google Scholar]
  21. Markaverich B. M., Roberts R. R., Alejandro M., Clark J. H. The effect of low dose continuous exposure to estradiol on the estrogen receptor (type I) and nuclear type II sites. Endocrinology. 1984 Mar;114(3):814–820. doi: 10.1210/endo-114-3-814. [DOI] [PubMed] [Google Scholar]
  22. Markaverich B. M., Roberts R. R., Finney R. W., Clark J. H. Preliminary characterization of an endogenous inhibitor of [3H]estradiol binding in rat uterine nuclei. J Biol Chem. 1983 Oct 10;258(19):11663–11671. [PubMed] [Google Scholar]
  23. Markaverich B. M., Williams M., Upchurch S., Clark J. H. Heterogeneity of nuclear estrogen-binding sites in the rat uterus: a simple method for the quantitation of type I and type II sites by [3H]estradiol exchange. Endocrinology. 1981 Jul;109(1):62–69. doi: 10.1210/endo-109-1-62. [DOI] [PubMed] [Google Scholar]
  24. Martin P. M., Horwitz K. B., Ryan D. S., McGuire W. L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 1978 Nov;103(5):1860–1867. doi: 10.1210/endo-103-5-1860. [DOI] [PubMed] [Google Scholar]
  25. Migliaccio A., Castoria G., Di Domenico M., de Falco A., Bilancio A., Lombardi M., Barone M. V., Ametrano D., Zannini M. S., Abbondanza C. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J. 2000 Oct 16;19(20):5406–5417. doi: 10.1093/emboj/19.20.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miller M. A., Katzenellenbogen B. S. Characterization and quantitation of antiestrogen binding sites in estrogen receptor-positive and -negative human breast cancer cell lines. Cancer Res. 1983 Jul;43(7):3094–3100. [PubMed] [Google Scholar]
  27. Mäkelä S., Santti R., Salo L., McLachlan J. A. Phytoestrogens are partial estrogen agonists in the adult male mouse. Environ Health Perspect. 1995 Oct;103 (Suppl 7):123–127. doi: 10.1289/ehp.103-1518873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noble R. L., Hochachka B. C., King D. Spontaneous and estrogen-produced tumors in Nb rats and their behavior after transplantation. Cancer Res. 1975 Mar;35(3):766–780. [PubMed] [Google Scholar]
  29. Port C. D., Kaltenbach J. P. The effect of corncob bedding on reproductivity and leucine incorporation in mice. Lab Anim Care. 1969 Feb;19(1):46–49. [PubMed] [Google Scholar]
  30. Power R. F., Mani S. K., Codina J., Conneely O. M., O'Malley B. W. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science. 1991 Dec 13;254(5038):1636–1639. doi: 10.1126/science.1749936. [DOI] [PubMed] [Google Scholar]
  31. Singh J., Hamid R., Reddy B. S. Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res. 1997 Aug 15;57(16):3465–3470. [PubMed] [Google Scholar]
  32. Smith D. F., Toft D. O. Steroid receptors and their associated proteins. Mol Endocrinol. 1993 Jan;7(1):4–11. doi: 10.1210/mend.7.1.8446107. [DOI] [PubMed] [Google Scholar]
  33. Thompson L. U. Antioxidants and hormone-mediated health benefits of whole grains. Crit Rev Food Sci Nutr. 1994;34(5-6):473–497. doi: 10.1080/10408399409527676. [DOI] [PubMed] [Google Scholar]
  34. Tremblay G. B., Tremblay A., Copeland N. G., Gilbert D. J., Jenkins N. A., Labrie F., Giguère V. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol. 1997 Mar;11(3):353–365. doi: 10.1210/mend.11.3.9902. [DOI] [PubMed] [Google Scholar]
  35. Vignon F., Terqui M., Westley B., Derocq D., Rochefort H. Effects of plasma estrogen sulfates in mammary cancer cells. Endocrinology. 1980 Apr;106(4):1079–1086. doi: 10.1210/endo-106-4-1079. [DOI] [PubMed] [Google Scholar]
  36. Weigel R. J., deConinck E. C. Transcriptional control of estrogen receptor in estrogen receptor-negative breast carcinoma. Cancer Res. 1993 Aug 1;53(15):3472–3474. [PubMed] [Google Scholar]
  37. Weisburger J. H., Rivenson A., Hard G. C., Zang E., Nagao M., Sugimura T. Role of fat and calcium in cancer causation by food mutagens, heterocyclic amines. Proc Soc Exp Biol Med. 1994 Apr;205(4):347–352. doi: 10.3181/00379727-205-43717. [DOI] [PubMed] [Google Scholar]
  38. Whitten P. L., Naftolin F. Effects of a phytoestrogen diet on estrogen-dependent reproductive processes in immature female rats. Steroids. 1992 Feb;57(2):56–61. doi: 10.1016/0039-128x(92)90029-9. [DOI] [PubMed] [Google Scholar]
  39. Whitten P. L., Russell E., Naftolin F. Effects of a normal, human-concentration, phytoestrogen diet on rat uterine growth. Steroids. 1992 Mar;57(3):98–106. doi: 10.1016/0039-128x(92)90066-i. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES