Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Mar;110(3):277–284. doi: 10.1289/ehp.02110277

Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

Douglas Crump 1, David Lean 1, Vance L Trudeau 1
PMCID: PMC1240768  PMID: 11882479

Abstract

We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p < 0.05), but neither OP nor UV-B alone produced significant changes in body weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic genes and disrupt tadpole growth patterns.

Full Text

The Full Text of this article is available as a PDF (561.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. J., Frawley L. S. Octylphenol (OP), an environmental estrogen, stimulates prolactin (PRL) gene expression. Life Sci. 1997;60(17):1457–1465. doi: 10.1016/s0024-3205(97)00097-0. [DOI] [PubMed] [Google Scholar]
  2. Blaustein A. R., Hoffman P. D., Hokit D. G., Kiesecker J. M., Walls S. C., Hays J. B. UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1791–1795. doi: 10.1073/pnas.91.5.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blázquez M., Bosma P. T., Chang J. P., Docherty K., Trudeau V. L. Gamma-aminobutyric acid up-regulates the expression of a novel secretogranin-II messenger ribonucleic acid in the goldfish pituitary. Endocrinology. 1998 Dec;139(12):4870–4880. doi: 10.1210/endo.139.12.6339. [DOI] [PubMed] [Google Scholar]
  4. Blázquez M., Bosma P. T., Fraser E. J., Van Look K. J., Trudeau V. L. Fish as models for the neuroendocrine regulation of reproduction and growth. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Jun;119(3):345–364. doi: 10.1016/s0742-8413(98)00023-1. [DOI] [PubMed] [Google Scholar]
  5. Burbach J. P. Genetic pathways in the developmental specification of hypothalamic neuropeptide and midbrain catecholamine systems. Eur J Pharmacol. 2000 Sep 29;405(1-3):55–62. doi: 10.1016/s0014-2999(00)00541-0. [DOI] [PubMed] [Google Scholar]
  6. Chang J. P., Johnson J. D., Van Goor F., Wong C. J., Yunker W. K., Uretsky A. D., Taylor D., Jobin R. M., Wong A. O., Goldberg J. I. Signal transduction mechanisms mediating secretion in goldfish gonadotropes and somatotropes. Biochem Cell Biol. 2000;78(3):139–153. [PubMed] [Google Scholar]
  7. Cheek A. O., Ide C. F., Bollinger J. E., Rider C. V., McLachlan J. A. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch Environ Contam Toxicol. 1999 Jul;37(1):70–77. doi: 10.1007/s002449900491. [DOI] [PubMed] [Google Scholar]
  8. Crawford B. J., Reimer C. L., Pang T. Localization and partial characterization of a molecule found in the plasma membrane of starfish and sea urchin embryos using a novel monoclonal antibody. Biochem Cell Biol. 2000;78(1):1–10. [PubMed] [Google Scholar]
  9. Denver R. J. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav. 1997 Apr;31(2):169–179. doi: 10.1006/hbeh.1997.1383. [DOI] [PubMed] [Google Scholar]
  10. Denver R. J., Pavgi S., Shi Y. B. Thyroid hormone-dependent gene expression program for Xenopus neural development. J Biol Chem. 1997 Mar 28;272(13):8179–8188. doi: 10.1074/jbc.272.13.8179. [DOI] [PubMed] [Google Scholar]
  11. Denver R. J. The molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Jun;119(3):219–228. doi: 10.1016/s0742-8413(98)00011-5. [DOI] [PubMed] [Google Scholar]
  12. FRIEDEN E., NAILE B. Biochemistry of amphibian metamorphosis: I. Enhancement of induced metamorphosis by glucocorticoids. Science. 1955 Jan 7;121(3132):37–39. doi: 10.1126/science.121.3132.37. [DOI] [PubMed] [Google Scholar]
  13. Folmar L. C., Denslow N. D., Rao V., Chow M., Crain D. A., Enblom J., Marcino J., Guillette L. J., Jr Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ Health Perspect. 1996 Oct;104(10):1096–1101. doi: 10.1289/ehp.961041096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fritz J. L., VanBerkum M. F. Calmodulin and son of sevenless dependent signaling pathways regulate midline crossing of axons in the Drosophila CNS. Development. 2000 May;127(9):1991–2000. doi: 10.1242/dev.127.9.1991. [DOI] [PubMed] [Google Scholar]
  15. Guillette L. J., Jr, Gross T. S., Masson G. R., Matter J. M., Percival H. F., Woodward A. R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect. 1994 Aug;102(8):680–688. doi: 10.1289/ehp.94102680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hays J. B., Blaustein A. R., Kiesecker J. M., Hoffman P. D., Pandelova I., Coyle D., Richardson T. Developmental responses of amphibians to solar and artificial UVB sources: a comparative study. Photochem Photobiol. 1996 Sep;64(3):449–456. doi: 10.1111/j.1751-1097.1996.tb03090.x. [DOI] [PubMed] [Google Scholar]
  17. Hopkins W. A., Mendonça M. T., Congdon J. D. Responsiveness of the hypothalamo-pituitary-interrenal axis in an amphibian (Bufo terrestris) exposed to coal combustion wastes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999 Feb;122(2):191–196. doi: 10.1016/s0742-8413(98)10104-4. [DOI] [PubMed] [Google Scholar]
  18. Houlahan J. E., Findlay C. S., Schmidt B. R., Meyer A. H., Kuzmin S. L. Quantitative evidence for global amphibian population declines. Nature. 2000 Apr 13;404(6779):752–755. doi: 10.1038/35008052. [DOI] [PubMed] [Google Scholar]
  19. Jessell T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2000 Oct;1(1):20–29. doi: 10.1038/35049541. [DOI] [PubMed] [Google Scholar]
  20. Kloas W., Lutz I., Einspanier R. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ. 1999 Jan 12;225(1-2):59–68. doi: 10.1016/s0048-9697(99)80017-5. [DOI] [PubMed] [Google Scholar]
  21. Liu C. G., Maercker C., Castañon M. J., Hauptmann R., Wiche G. Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4278–4283. doi: 10.1073/pnas.93.9.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lutz I., Kloas W. Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci Total Environ. 1999 Jan 12;225(1-2):49–57. doi: 10.1016/s0048-9697(99)80016-3. [DOI] [PubMed] [Google Scholar]
  23. Matuoka K., Miki H., Takahashi K., Takenawa T. A novel ligand for an SH3 domain of the adaptor protein Nck bears an SH2 domain and nuclear signaling motifs. Biochem Biophys Res Commun. 1997 Oct 20;239(2):488–492. doi: 10.1006/bbrc.1997.7492. [DOI] [PubMed] [Google Scholar]
  24. McCarty J. H. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. Bioessays. 1998 Nov;20(11):913–921. doi: 10.1002/(SICI)1521-1878(199811)20:11<913::AID-BIES6>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  25. Nishimori H., Shiratsuchi T., Urano T., Kimura Y., Kiyono K., Tatsumi K., Yoshida S., Ono M., Kuwano M., Nakamura Y. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene. 1997 Oct;15(18):2145–2150. doi: 10.1038/sj.onc.1201542. [DOI] [PubMed] [Google Scholar]
  26. Nishimura N., Fukazawa Y., Uchiyama H., Iguchi T. Effects of estrogenic hormones on early development of Xenopus laevis. J Exp Zool. 1997 Jul 1;278(4):221–233. doi: 10.1002/(sici)1097-010x(19970701)278:4<221::aid-jez3>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  27. Pickford D. B., Morris I. D. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro. Environ Health Perspect. 1999 Apr;107(4):285–292. doi: 10.1289/ehp.99107285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pinal C. S., Tobin A. J. Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol. 1998;5(2-3):109–118. [PubMed] [Google Scholar]
  29. Reeder A. L., Foley G. L., Nichols D. K., Hansen L. G., Wikoff B., Faeh S., Eisold J., Wheeler M. B., Warner R., Murphy J. E. Forms and prevalence of intersexuality and effects of environmental contaminants on sexuality in cricket frogs (Acris crepitans). Environ Health Perspect. 1998 May;106(5):261–266. doi: 10.1289/ehp.98106261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shiratsuchi T., Nishimori H., Ichise H., Nakamura Y., Tokino T. Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet Cell Genet. 1997;79(1-2):103–108. doi: 10.1159/000134693. [DOI] [PubMed] [Google Scholar]
  31. Sower S. A., Reed K. L., Babbitt K. J. Limb malformations and abnormal sex hormone concentrations in frogs. Environ Health Perspect. 2000 Nov;108(11):1085–1090. doi: 10.1289/ehp.001081085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sumpter J. P., Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect. 1995 Oct;103 (Suppl 7):173–178. doi: 10.1289/ehp.95103s7173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tata J. R. Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Biochimie. 1999 Apr;81(4):359–366. doi: 10.1016/s0300-9084(99)80082-0. [DOI] [PubMed] [Google Scholar]
  34. Waagepetersen H. S., Sonnewald U., Schousboe A. The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem. 1999 Oct;73(4):1335–1342. doi: 10.1046/j.1471-4159.1999.0731335.x. [DOI] [PubMed] [Google Scholar]
  35. Wan J. S., Erlander M. G. Cloning differentially expressed genes by using differential display and subtractive hybridization. Methods Mol Biol. 1997;85:45–68. doi: 10.1385/0-89603-489-5:45. [DOI] [PubMed] [Google Scholar]
  36. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994 Jul;135(1):175–182. doi: 10.1210/endo.135.1.8013351. [DOI] [PubMed] [Google Scholar]
  37. Wildsmith S. E., Elcock F. J. Microarrays under the microscope. Mol Pathol. 2001 Feb;54(1):8–16. doi: 10.1136/mp.54.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Worrest R. C., Kimeldorf D. J. Distortions in amphibian development induced by ultraviolet-B enhancement (290-315 NM) of a simulated solar spectrum. Photochem Photobiol. 1976 Oct;24(4):377–382. doi: 10.1111/j.1751-1097.1976.tb06840.x. [DOI] [PubMed] [Google Scholar]
  39. Yamagata K., Andreasson K. I., Sugiura H., Maru E., Dominique M., Irie Y., Miki N., Hayashi Y., Yoshioka M., Kaneko K. Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem. 1999 Jul 2;274(27):19473–11979. doi: 10.1074/jbc.274.27.19473. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES