Abstract
Exposure of experimental animals or cultured cells to arsenic induces oxidative stress, but, to date, no examination of this phenomenon in humans has been reported. In this study we conducted a cross-sectional study in Wuyuan, Inner Mongolia, China, to explore the relationship between chronic arsenic exposure from drinking water and oxidative stress in humans. Thirty-three inhabitants who had been drinking tube-well water with high concentrations of inorganic arsenic (mean value = 0.41 mg/L) for about 18 years constituted the high-exposure group, and 10 residents who lived nearby but were exposed to much lower concentrations of arsenic in their drinking water (mean value = 0.02 mg/L) were selected as the low-exposure comparison group. Results of the present study indicated that although the activity for superoxide dismutase (SOD) in blood did not differ significantly between the two groups, the mean serum level of lipid peroxides (LPO) was significantly higher among the high-exposed compared with the low-exposed group. Elevated serum LPO concentrations were correlated with blood levels of inorganic arsenic and its methylated metabolites. In addition, they showed an inverse correlation with nonprotein sulfhydryl (NPSH) levels in whole blood. The subjects in the high-arsenic-exposure group had mean blood NPSH levels 57.6% lower than those in the low-exposure group. Blood NPSH levels were inversely correlated with the concentrations of inorganic arsenic and its methylated metabolites in blood and with the ratio of monomethylarsenic to inorganic arsenic. These results provide evidence that chronic exposure to arsenic from drinking water in humans results in induction of oxidative stress, as indicated by the reduction in NPSH and the increase in LPO. Some possible mechanisms for the arsenic-induced oxidative stress are discussed.
Full Text
The Full Text of this article is available as a PDF (549.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert A. J., Gilbert H. F. Detection of oxidized and reduced glutathione with a recycling postcolumn reaction. Anal Biochem. 1985 Feb 1;144(2):553–562. doi: 10.1016/0003-2697(85)90153-8. [DOI] [PubMed] [Google Scholar]
- Anderson M. E. Glutathione and glutathione delivery compounds. Adv Pharmacol. 1997;38:65–78. doi: 10.1016/s1054-3589(08)60979-5. [DOI] [PubMed] [Google Scholar]
- Aposhian H. V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol. 1997;37:397–419. doi: 10.1146/annurev.pharmtox.37.1.397. [DOI] [PubMed] [Google Scholar]
- Aposhian H. V., Zheng B., Aposhian M. M., Le X. C., Cebrian M. E., Cullen W., Zakharyan R. A., Ma M., Dart R. C., Cheng Z. DMPS-arsenic challenge test. II. Modulation of arsenic species, including monomethylarsonous acid (MMA(III)), excreted in human urine. Toxicol Appl Pharmacol. 2000 May 15;165(1):74–83. doi: 10.1006/taap.2000.8922. [DOI] [PubMed] [Google Scholar]
- Applegate L. A., Luscher P., Tyrrell R. M. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991 Feb 1;51(3):974–978. [PubMed] [Google Scholar]
- Barchowsky A., Klei L. R., Dudek E. J., Swartz H. M., James P. E. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999 Dec;27(11-12):1405–1412. doi: 10.1016/s0891-5849(99)00186-0. [DOI] [PubMed] [Google Scholar]
- Bates M. N., Smith A. H., Hopenhayn-Rich C. Arsenic ingestion and internal cancers: a review. Am J Epidemiol. 1992 Mar 1;135(5):462–476. doi: 10.1093/oxfordjournals.aje.a116313. [DOI] [PubMed] [Google Scholar]
- Bhuvaneswaran C. The influence of phosphorylation state ratio on energy conservation in mitochondria treated with inorganic arsenate. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1201–1206. doi: 10.1016/0006-291x(79)91164-1. [DOI] [PubMed] [Google Scholar]
- Chen C. J. Blackfoot disease. Lancet. 1990 Aug 18;336(8712):442–442. doi: 10.1016/0140-6736(90)91990-r. [DOI] [PubMed] [Google Scholar]
- Chen C. J., Hsueh Y. M., Lai M. S., Shyu M. P., Chen S. Y., Wu M. M., Kuo T. L., Tai T. Y. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 1995 Jan;25(1):53–60. [PubMed] [Google Scholar]
- Chen Y. C., Lin-Shiau S. Y., Lin J. K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol. 1998 Nov;177(2):324–333. doi: 10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Chung P. M., Cappel R. E., Gilbert H. F. Inhibition of glutathione disulfide reductase by glutathione. Arch Biochem Biophys. 1991 Jul;288(1):48–53. doi: 10.1016/0003-9861(91)90163-d. [DOI] [PubMed] [Google Scholar]
- Delnomdedieu M., Basti M. M., Otvos J. D., Thomas D. J. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact. 1994 Feb;90(2):139–155. doi: 10.1016/0009-2797(94)90099-x. [DOI] [PubMed] [Google Scholar]
- Deneke S. M., Fanburg B. L. Regulation of cellular glutathione. Am J Physiol. 1989 Oct;257(4 Pt 1):L163–L173. doi: 10.1152/ajplung.1989.257.4.L163. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Elstner E. F., Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976 Feb;70(2):616–620. doi: 10.1016/0003-2697(76)90488-7. [DOI] [PubMed] [Google Scholar]
- Engel R. R., Hopenhayn-Rich C., Receveur O., Smith A. H. Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 1994;16(2):184–209. doi: 10.1093/oxfordjournals.epirev.a036150. [DOI] [PubMed] [Google Scholar]
- Flora S. J. Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol. 1999 Nov;26(11):865–869. doi: 10.1046/j.1440-1681.1999.03157.x. [DOI] [PubMed] [Google Scholar]
- Jing Y., Dai J., Chalmers-Redman R. M., Tatton W. G., Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999 Sep 15;94(6):2102–2111. [PubMed] [Google Scholar]
- Kumagai Y., Shinyashiki M., Sun G. F., Shimojo N., Sagai M. An efficient method for purification of cuprozinc superoxide dismutase from bovine erythrocytes. Experientia. 1994 Jul 15;50(7):673–676. doi: 10.1007/BF01952871. [DOI] [PubMed] [Google Scholar]
- Kuo P. C., Abe K. Y., Schroeder R. A. Interleukin-1-induced nitric oxide production modulates glutathione synthesis in cultured rat hepatocytes. Am J Physiol. 1996 Sep;271(3 Pt 1):C851–C862. doi: 10.1152/ajpcell.1996.271.3.C851. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Ho I. C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol. 1995;69(7):498–504. doi: 10.1007/s002040050204. [DOI] [PubMed] [Google Scholar]
- Levonen A. L., Laakso J., Vaskonen T., Mervaala E., Karppanen H., Lapatto R. Down-regulation of renal glutathione synthesis by systemic nitric oxide synthesis inhibition in spontaneously hypertensive rats. Biochem Pharmacol. 2000 Feb 15;59(4):441–443. doi: 10.1016/s0006-2952(99)00338-x. [DOI] [PubMed] [Google Scholar]
- Liu J., Liu Y., Goyer R. A., Achanzar W., Waalkes M. P. Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sci. 2000 Jun;55(2):460–467. doi: 10.1093/toxsci/55.2.460. [DOI] [PubMed] [Google Scholar]
- Maiti S., Chatterjee A. K. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch Toxicol. 2001 Nov;75(9):531–537. doi: 10.1007/s002040100240. [DOI] [PubMed] [Google Scholar]
- Matsui M., Nishigori C., Toyokuni S., Takada J., Akaboshi M., Ishikawa M., Imamura S., Miyachi Y. The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease. J Invest Dermatol. 1999 Jul;113(1):26–31. doi: 10.1046/j.1523-1747.1999.00630.x. [DOI] [PubMed] [Google Scholar]
- Matés J. M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000 Nov 16;153(1-3):83–104. doi: 10.1016/s0300-483x(00)00306-1. [DOI] [PubMed] [Google Scholar]
- Mitchell R. A., Chang B. F., Huang C. H., DeMaster E. G. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action. Biochemistry. 1971 May 25;10(11):2049–2054. doi: 10.1021/bi00787a013. [DOI] [PubMed] [Google Scholar]
- Moellering D., McAndrew J., Patel R. P., Cornwell T., Lincoln T., Cao X., Messina J. L., Forman H. J., Jo H., Darley-Usmar V. M. Nitric oxide-dependent induction of glutathione synthesis through increased expression of gamma-glutamylcysteine synthetase. Arch Biochem Biophys. 1998 Oct 1;358(1):74–82. doi: 10.1006/abbi.1998.0854. [DOI] [PubMed] [Google Scholar]
- Nordenson I., Beckman L. Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered. 1991;41(1):71–73. doi: 10.1159/000153979. [DOI] [PubMed] [Google Scholar]
- Ochi T., Kaise T., Oya-Ohta Y. Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia. 1994 Feb 15;50(2):115–120. doi: 10.1007/BF01984946. [DOI] [PubMed] [Google Scholar]
- Peng J., Jones G. L., Watson K. Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med. 2000 Jun 1;28(11):1598–1606. doi: 10.1016/s0891-5849(00)00276-8. [DOI] [PubMed] [Google Scholar]
- Pi J., Kumagai Y., Sun G., Yamauchi H., Yoshida T., Iso H., Endo A., Yu L., Yuki K., Miyauchi T. Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Radic Biol Med. 2000 Apr 1;28(7):1137–1142. doi: 10.1016/s0891-5849(00)00209-4. [DOI] [PubMed] [Google Scholar]
- Ramos O., Carrizales L., Yáez L., Mejía J., Batres L., Ortíz D., Díaz-Barriga F. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Perspect. 1995 Feb;103 (Suppl 1):85–88. doi: 10.1289/ehp.95103s185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed D. J. Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol. 1990;30:603–631. doi: 10.1146/annurev.pa.30.040190.003131. [DOI] [PubMed] [Google Scholar]
- Sampayo-Reyes A., Zakharyan R. A., Healy S. M., Aposhian H. V. Monomethylarsonic acid reductase and monomethylarsonous acid in hamster tissue. Chem Res Toxicol. 2000 Nov;13(11):1181–1186. doi: 10.1021/tx000154s. [DOI] [PubMed] [Google Scholar]
- Scott N., Hatlelid K. M., MacKenzie N. E., Carter D. E. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol. 1993 Jan-Feb;6(1):102–106. doi: 10.1021/tx00031a016. [DOI] [PubMed] [Google Scholar]
- Styblo M., Serves S. V., Cullen W. R., Thomas D. J. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol. 1997 Jan;10(1):27–33. doi: 10.1021/tx960139g. [DOI] [PubMed] [Google Scholar]
- Stýblo M., Thomas D. J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochem Pharmacol. 1995 Mar 30;49(7):971–977. doi: 10.1016/0006-2952(95)00008-n. [DOI] [PubMed] [Google Scholar]
- Thompson D. J. A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact. 1993 Sep;88(2-3):89–14. doi: 10.1016/0009-2797(93)90086-e. [DOI] [PubMed] [Google Scholar]
- Tondel M., Rahman M., Magnuson A., Chowdhury I. A., Faruquee M. H., Ahmad S. A. The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect. 1999 Sep;107(9):727–729. doi: 10.1289/ehp.99107727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tseng W. P. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect. 1977 Aug;19:109–119. doi: 10.1289/ehp.7719109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang T. S., Huang H. Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagenesis. 1994 May;9(3):253–257. doi: 10.1093/mutage/9.3.253. [DOI] [PubMed] [Google Scholar]
- Wang T. S., Kuo C. F., Jan K. Y., Huang H. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol. 1996 Nov;169(2):256–268. doi: 10.1002/(SICI)1097-4652(199611)169:2<256::AID-JCP5>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Wang T. S., Shu Y. F., Liu Y. C., Jan K. Y., Huang H. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology. 1997 Sep 5;121(3):229–237. doi: 10.1016/s0300-483x(97)00071-1. [DOI] [PubMed] [Google Scholar]
- Wanibuchi H., Hori T., Meenakshi V., Ichihara T., Yamamoto S., Yano Y., Otani S., Nakae D., Konishi Y., Fukushima S. Promotion of rat hepatocarcinogenesis by dimethylarsinic acid: association with elevated ornithine decarboxylase activity and formation of 8-hydroxydeoxyguanosine in the liver. Jpn J Cancer Res. 1997 Dec;88(12):1149–1154. doi: 10.1111/j.1349-7006.1997.tb00343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winski S. L., Carter D. E. Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. J Toxicol Environ Health. 1995 Nov;46(3):379–397. doi: 10.1080/15287399509532043. [DOI] [PubMed] [Google Scholar]
- Yamanaka K., Hasegawa A., Sawamura R., Okada S. Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol. 1991 Apr;108(2):205–213. doi: 10.1016/0041-008x(91)90111-q. [DOI] [PubMed] [Google Scholar]
- Yamanaka K., Hasegawa A., Sawamura R., Okada S. Dimethylated arsenics induce DNA strand breaks in lung via the production of active oxygen in mice. Biochem Biophys Res Commun. 1989 Nov 30;165(1):43–50. doi: 10.1016/0006-291x(89)91031-0. [DOI] [PubMed] [Google Scholar]
- Yamanaka K., Hoshino M., Okamoto M., Sawamura R., Hasegawa A., Okada S. Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun. 1990 Apr 16;168(1):58–64. doi: 10.1016/0006-291x(90)91674-h. [DOI] [PubMed] [Google Scholar]
- Yamauchi H., Yamamura Y. Metabolism and excretion of orally administered dimethylarsinic acid in the hamster. Toxicol Appl Pharmacol. 1984 Jun 15;74(1):134–140. doi: 10.1016/0041-008x(84)90279-5. [DOI] [PubMed] [Google Scholar]