Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Apr;110(4):343–348. doi: 10.1289/ehp.02110343

Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene.

Peter van den Hurk 1, Gerhard A Kubiczak 1, Hans-Joachim Lehmler 1, Margaret O James 1
PMCID: PMC1240796  PMID: 11940451

Abstract

Polychlorinated biphenyls (PCBs) can be metabolized by cytochromes P450 to hydroxylated biotransformation products. In mammalian studies, some of the hydroxylated products have been shown to be strong inhibitors of steroid sulfotransferases. As a part of ongoing research into the bioavailability of environmental pollutants in catfish intestine, we investigated the effects of a series of hydroxylated PCBs (OH-PCBs) on two conjugating enzymes, phenol-type sulfotransferase and glucuronosyltransferase. We incubated cytosolic and microsomal samples prepared from intestinal mucosa with 3-hydroxy-benzo[a]pyrene and appropriate cosubstrates and measured the effect of OH-PCBs on the formation of BaP-3-glucuronide and BaP-3-sulfate. We used PCBs with 4, 5, and 6 chlorine substitutions and the phenolic group in the ortho, meta, and para positions. OH-PCBs with the phenolic group in the ortho position were weak inhibitors of sulfotransferase; the median inhibitory concentration (IC50) ranged from 330 to 526 microM. When the phenol group was in the meta or para position, the IC50 was much lower (17.8-44.3 microM). The OH-PCBs were more potent inhibitors of glucuronosyltransferase, with IC50s ranging from 1.2 to 36.4 microM. The position of the phenolic group was not related to the inhibitory potency: the two weakest inhibitors of sulfotransferase, with the phenolic group in the ortho position, were 100 times more potent as inhibitors of glucuronosyltransferase. Inhibition of glucuronosyltransferase by low concentrations of OH-PCBs has not been reported before and may have important consequences for the bioavailability, bioaccumulation, and toxicity of other phenolic environmental contaminants.

Full Text

The Full Text of this article is available as a PDF (637.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bello S. M., Franks D. G., Stegeman J. J., Hahn M. E. Acquired resistance to Ah receptor agonists in a population of Atlantic killifish (Fundulus heteroclitus) inhabiting a marine superfund site: in vivo and in vitro studies on the inducibility of xenobiotic metabolizing enzymes. Toxicol Sci. 2001 Mar;60(1):77–91. doi: 10.1093/toxsci/60.1.77. [DOI] [PubMed] [Google Scholar]
  2. Boon J. P., Oostingh I., van der Meer J., Hillebrand M. T. A model for the bioaccumulation of chlorobiphenyl congeners in marine mammals. Eur J Pharmacol. 1994 Apr 4;270(2-3):237–251. doi: 10.1016/0926-6917(94)90068-x. [DOI] [PubMed] [Google Scholar]
  3. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  4. Connor K., Ramamoorthy K., Moore M., Mustain M., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol. 1997 Jul;145(1):111–123. doi: 10.1006/taap.1997.8169. [DOI] [PubMed] [Google Scholar]
  5. Doi A. M., Lou Z., Holmes E., Li C., Venugopal C. S., James M. O., Kleinow K. M. Effect of micelle fatty acid composition and 3,4,3', 4'-tetrachlorobiphenyl (TCB) exposure on intestinal [(14)C]-TCB bioavailability and biotransformation in channel catfish in situ preparations. Toxicol Sci. 2000 May;55(1):85–96. doi: 10.1093/toxsci/55.1.85. [DOI] [PubMed] [Google Scholar]
  6. Falany C. N. Enzymology of human cytosolic sulfotransferases. FASEB J. 1997 Mar;11(4):206–216. doi: 10.1096/fasebj.11.4.9068609. [DOI] [PubMed] [Google Scholar]
  7. Glatt H. R., Oesch F. Phenolic benzo(a)pyrene metabolites are mutagens. Mutat Res. 1976 Sep;36(3):379–384. doi: 10.1016/0027-5107(76)90247-5. [DOI] [PubMed] [Google Scholar]
  8. Glatt H., Seidel A., Ribeiro O., Kirkby C., Hirom P., Oesch F. Metabolic activation to a mutagen of 3-hydroxy-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, a secondary metabolite of benzo[a]pyrene. Carcinogenesis. 1987 Nov;8(11):1621–1627. doi: 10.1093/carcin/8.11.1621. [DOI] [PubMed] [Google Scholar]
  9. Haraguchi K., Kato Y., Kimura R., Masuda Y. Hydroxylation and methylthiolation of mono-ortho-substituted polychlorinated biphenyls in rats: identification of metabolites with tissue affinity. Chem Res Toxicol. 1998 Dec;11(12):1508–1515. doi: 10.1021/tx980183r. [DOI] [PubMed] [Google Scholar]
  10. Humphrey H. E., Gardiner J. C., Pandya J. R., Sweeney A. M., Gasior D. M., McCaffrey R. J., Schantz S. L. PCB congener profile in the serum of humans consuming Great Lakes fish. Environ Health Perspect. 2000 Feb;108(2):167–172. doi: 10.1289/ehp.00108167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. James M. O., Altman A. H., Morris K., Kleinow K. M., Tong Z. Dietary modulation of phase 1 and phase 2 activities with benzo(a)pyrene and related compounds in the intestine but not the liver of the channel catfish, Ictalurus punctatus. Drug Metab Dispos. 1997 Mar;25(3):346–354. [PubMed] [Google Scholar]
  12. James M. O., Schell J. D., Boyle S. M., Altman A. H., Cromer E. A. Southern flounder hepatic and intestinal metabolism and DNA binding of benzo[a]pyrene (BaP) metabolites following dietary administration of low doses of BaP, BaP-7,8-dihydrodiol or a BaP metabolite mixture. Chem Biol Interact. 1991;79(3):305–321. doi: 10.1016/0009-2797(91)90111-j. [DOI] [PubMed] [Google Scholar]
  13. James M. O., Tong Z., Rowland-Faux L., Venugopal C. S., Kleinow K. M. Intestinal bioavailability and biotransformation of 3-hydroxybenzo(a)pyrene in an isolated perfused preparation from channel catfish, Ictalurus punctatus. Drug Metab Dispos. 2001 May;29(5):721–728. [PubMed] [Google Scholar]
  14. Kajiwara N., Kannan K., Muraoka M., Watanabe M., Takahashi S., Gulland F., Olsen H., Blankenship A. L., Jones P. D., Tanabe S. Organochlorine pesticides, polychlorinated biphenyls, and butyltin compounds in blubber and livers of stranded California sea lions, elephant seals, and harbor seals from coastal California, USA. Arch Environ Contam Toxicol. 2001 Jul;41(1):90–99. doi: 10.1007/s002440010224. [DOI] [PubMed] [Google Scholar]
  15. Kato Y., Haraguchi K., Shibahara T., Shinmura Y., Masuda Y., Kimura R. The induction of hepatic microsomal UDP-glucuronosyltransferase by the methylsulfonyl metabolites of polychlorinated biphenyl congeners in rats. Chem Biol Interact. 2000 Mar 1;125(2):107–115. doi: 10.1016/s0009-2797(99)00168-4. [DOI] [PubMed] [Google Scholar]
  16. Kester M. H., Bulduk S., Tibboel D., Meinl W., Glatt H., Falany C. N., Coughtrie M. W., Bergman A., Safe S. H., Kuiper G. G. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology. 2000 May;141(5):1897–1900. doi: 10.1210/endo.141.5.7530. [DOI] [PubMed] [Google Scholar]
  17. Owens I. S., Legraverend C., Pelkonen O. Deoxyribonucleic acid binding of 3-hydroxy- and 9-hydroxybenzo[a]pyrene following further metabolism by mouse liver microsomal cytochrome P1-450. Biochem Pharmacol. 1979 May 15;28(10):1623–1629. doi: 10.1016/0006-2952(79)90175-8. [DOI] [PubMed] [Google Scholar]
  18. Safe S. H. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24(2):87–149. doi: 10.3109/10408449409049308. [DOI] [PubMed] [Google Scholar]
  19. Safe S., Washburn K., Zacharewski T., Phillips T. Synthesis and characterization of hydroxylated polychlorinated biphenyls (PCBs) identified in human serum. Chemosphere. 1995 Aug;31(4):3017–3023. doi: 10.1016/0045-6535(95)00162-2. [DOI] [PubMed] [Google Scholar]
  20. Sandau C. D., Ayotte P., Dewailly E., Duffe J., Norstrom R. J. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian inuit. Environ Health Perspect. 2000 Jul;108(7):611–616. doi: 10.1289/ehp.00108611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schuur A. G., Brouwer A., Bergman A., Coughtrie M. W., Visser T. J. Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. Chem Biol Interact. 1998 Feb 20;109(1-3):293–297. doi: 10.1016/s0009-2797(97)00140-3. [DOI] [PubMed] [Google Scholar]
  22. Schuur A. G., Legger F. F., van Meeteren M. E., Moonen M. J., van Leeuwen-Bol I., Bergman A., Visser T. J., Brouwer A. In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol. 1998 Sep;11(9):1075–1081. doi: 10.1021/tx9800046. [DOI] [PubMed] [Google Scholar]
  23. Singh J., Wiebel F. J. A highly sensitive and rapid fluorometric assay for UDP-glucuronyltransferase using 3-hydroxybenzo (a) pyrene as substrate. Anal Biochem. 1979 Oct 1;98(2):394–401. doi: 10.1016/0003-2697(79)90158-1. [DOI] [PubMed] [Google Scholar]
  24. Sjödin A., Hagmar L., Klasson-Wehler E., Björk J., Bergman A. Influence of the consumption of fatty Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men. Environ Health Perspect. 2000 Nov;108(11):1035–1041. doi: 10.1289/ehp.108-1240159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Song W. C., Melner M. H. Steroid transformation enzymes as critical regulators of steroid action in vivo. Endocrinology. 2000 May;141(5):1587–1589. doi: 10.1210/endo.141.5.7526. [DOI] [PubMed] [Google Scholar]
  26. Tong Z., James M. O. Purification and characterization of hepatic and intestinal phenol sulfotransferase with high affinity for benzo[a]pyrene phenols from channel catfish, Ictalurus punctatus. Arch Biochem Biophys. 2000 Apr 15;376(2):409–419. doi: 10.1006/abbi.2000.1746. [DOI] [PubMed] [Google Scholar]
  27. Van Veld P. A., Vogelbein W. K., Cochran M. K., Goksøyr A., Stegeman J. J. Route-specific cellular expression of cytochrome P4501A (CYP1A) in fish (Fundulus heteroclitus) following exposure to aqueous and dietary benzo[a]pyrene. Toxicol Appl Pharmacol. 1997 Feb;142(2):348–359. doi: 10.1006/taap.1996.8037. [DOI] [PubMed] [Google Scholar]
  28. Wehler E. K., Bergman A., Brandt I., Darnerud P. O., Wachtmeister C. A. 3,3',4,4'-Tetrachlorobiphenyl. Excretion and tissue retention of hydroxylated metabolites in the mouse. Drug Metab Dispos. 1989 Jul-Aug;17(4):441–448. [PubMed] [Google Scholar]
  29. White R. D., Shea D., Stegeman J. J. Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro. Drug Metab Dispos. 1997 May;25(5):564–572. [PubMed] [Google Scholar]
  30. Winston G. W., Shane B. S., Henry C. B. Hepatic monooxygenase induction and promutagen activation in channel catfish from a contaminated river basin. Ecotoxicol Environ Saf. 1988 Dec;16(3):258–271. doi: 10.1016/0147-6513(88)90055-3. [DOI] [PubMed] [Google Scholar]
  31. Zhang H., Varlamova O., Vargas F. M., Falany C. N., Leyh T. S., Varmalova O. Sulfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem. 1998 May 1;273(18):10888–10892. doi: 10.1074/jbc.273.18.10888. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES