Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Apr;110(4):363–375. doi: 10.1289/ehp.02110363

Prediction of rodent nongenotoxic carcinogenesis: evaluation of biochemical and tissue changes in rodents following exposure to nine nongenotoxic NTP carcinogens.

Clifford R Elcombe 1, Jenny Odum 1, John R Foster 1, Susan Stone 1, Susan Hasmall 1, Anthony R Soames 1, Ian Kimber 1, John Ashby 1
PMCID: PMC1240799  PMID: 11940454

Abstract

We studied nine presumed nongenotoxic rodent carcinogens, as defined by the U.S. National Toxicology Program (NTP), to determine their ability to induce acute or subacute biochemical and tissue changes that may act as useful predictors of nongenotoxic rodent carcinogenesis. The chemicals selected included six liver carcinogens (two of which are peroxisome proliferators), three thyroid gland carcinogens, and four kidney carcinogens. We administered the chemicals (diethylhexyl phthalate, cinnamyl anthranilate, chlorendic acid, 1,4-dichlorobenzene, monuron, ethylene thiourea, diethyl thiourea, trimethyl thiourea, and d-limonene to the same strains of mice and rats used in the original NTP bioassays (nine chemicals to rats and seven to mice). Selected tissues (liver, thyroid gland, and kidney) were collected from groups of animals at 7, 28, and 90 days for evaluation. Tissue changes selected for study were monitored for all of the test groups, irrespective of the specificity of the carcinogenic responses observed in those tissues. This allowed us to assess both the carcinogen specificity and the carcinogen sensitivity of the events being monitored. We studied relative weight, cell labeling indices, and pathologic changes such as hypertrophy in all tissues; a range of cytochrome P450 enzymes and palmitoyl coenzyme A oxidase in the liver; changes in the levels of plasma total triiodothyronine, total thyroxine, and thyroid-stimulating hormone (TSH) as markers of thyroid gland function; and hyaline droplet formation, tubular basophilia, and the formation of granular casts in the kidney. There were no single measurements that alerted specifically to the carcinogenicity of the agents to the rodent liver, thyroid gland, or kidney. However, in the majority of cases, the chemical induction of cancer in a tissue was preceded by a range of biochemical/morphologic changes, most of which were moderately specific for a carcinogenic outcome, and some of which were highly specific for it (e.g., increases in TSH in the thyroid gland and increases in relative liver weight in the mouse). The only measurements that failed to correlate usefully with carcinogenicity were the induction of liver enzymes (with the exception of the enzymes associated with peroxisome proliferation). Most of the useful markers were evident at the early times studied (7 days and 28 days), but no overall best time for the measurement of all markers was identified. The judicious choice of markers and evaluation times can aid the detection of potential nongenotoxic rodent carcinogens.

Full Text

The Full Text of this article is available as a PDF (8.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby J., Brady A., Elcombe C. R., Elliott B. M., Ishmael J., Odum J., Tugwood J. D., Kettle S., Purchase I. F. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol. 1994 Nov;13 (Suppl 2):S1–117. doi: 10.1177/096032719401300201. [DOI] [PubMed] [Google Scholar]
  2. Ashby J. Expectations for transgenic rodent cancer bioassay models. Toxicol Pathol. 2001;29 (Suppl):177–182. doi: 10.1080/019262301753178591. [DOI] [PubMed] [Google Scholar]
  3. Ashby J., Tennant R. W. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res. 1991 May;257(3):229–306. doi: 10.1016/0165-1110(91)90003-e. [DOI] [PubMed] [Google Scholar]
  4. Barber E. D., Astill B. D., Moran E. J., Schneider B. F., Gray T. J., Lake B. G., Evans J. G. Peroxisome induction studies on seven phthalate esters. Toxicol Ind Health. 1987 Jun;3(2):7–24. doi: 10.1177/074823378700300203. [DOI] [PubMed] [Google Scholar]
  5. Bars R. G., Mitchell A. M., Wolf C. R., Elcombe C. R. Induction of cytochrome P-450 in cultured rat hepatocytes. The heterogeneous localization of specific isoenzymes using immunocytochemistry. Biochem J. 1989 Aug 15;262(1):151–158. doi: 10.1042/bj2620151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bomhard E. M., Schmidt U., Löser E. Time course of enzyme induction in liver and kidneys and absorption, distribution and elimination of 1,4-dichlorobenzene in rats. Toxicology. 1998 Nov 16;131(2-3):73–91. doi: 10.1016/s0300-483x(98)00107-3. [DOI] [PubMed] [Google Scholar]
  7. Bronfman M., Inestrosa N. C., Leighton F. Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1030–1036. doi: 10.1016/0006-291x(79)91512-2. [DOI] [PubMed] [Google Scholar]
  8. Butterworth B. E., Bogdanffy M. S. A comprehensive approach for integration of toxicity and cancer risk assessments. Regul Toxicol Pharmacol. 1999 Feb;29(1):23–36. doi: 10.1006/rtph.1998.1273. [DOI] [PubMed] [Google Scholar]
  9. Eldridge S. R., Goldsworthy T. L., Popp J. A., Butterworth B. E. Mitogenic stimulation of hepatocellular proliferation in rodents following 1,4-dichlorobenzene administration. Carcinogenesis. 1992 Mar;13(3):409–415. doi: 10.1093/carcin/13.3.409. [DOI] [PubMed] [Google Scholar]
  10. Foster J. R. The role of cell proliferation in chemically induced carcinogenesis. J Comp Pathol. 1997 Feb;116(2):113–144. doi: 10.1016/s0021-9975(97)80071-0. [DOI] [PubMed] [Google Scholar]
  11. Greaves P. The evaluation of potential human carcinogens: a histopathologist's point of view. Exp Toxicol Pathol. 1996 Feb;48(2-3):169–174. doi: 10.1016/S0940-2993(96)80038-8. [DOI] [PubMed] [Google Scholar]
  12. Hard G. C. Mechanisms of chemically induced renal carcinogenesis in the laboratory rodent. Toxicol Pathol. 1998 Jan-Feb;26(1):104–112. doi: 10.1177/019262339802600112. [DOI] [PubMed] [Google Scholar]
  13. Hard G. C., Rodgers I. S., Baetcke K. P., Richards W. L., McGaughy R. E., Valcovic L. R. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats. Environ Health Perspect. 1993 Mar;99:313–349. doi: 10.1289/ehp.9399313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardisty J. F., Garman R. H., Harkema J. R., Lomax L. G., Morgan K. T. Histopathology of nasal olfactory mucosa from selected inhalation toxicity studies conducted with volatile chemicals. Toxicol Pathol. 1999 Nov-Dec;27(6):618–627. doi: 10.1177/019262339902700602. [DOI] [PubMed] [Google Scholar]
  15. Haseman J. K., Huff J. E., Zeiger E., McConnell E. E. Comparative results of 327 chemical carcinogenicity studies. Environ Health Perspect. 1987 Oct;74:229–235. doi: 10.1289/ehp.8774229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill R. N., Erdreich L. S., Paynter O. E., Roberts P. A., Rosenthal S. L., Wilkinson C. F. Thyroid follicular cell carcinogenesis. Fundam Appl Toxicol. 1989 May;12(4):629–697. [PubMed] [Google Scholar]
  17. Hoel D. G., Haseman J. K., Hogan M. D., Huff J., McConnell E. E. The impact of toxicity on carcinogenicity studies: implications for risk assessment. Carcinogenesis. 1988 Nov;9(11):2045–2052. doi: 10.1093/carcin/9.11.2045. [DOI] [PubMed] [Google Scholar]
  18. Huff J. Long-term chemical carcinogenesis bioassays predict human cancer hazards. Issues, controversies, and uncertainties. Ann N Y Acad Sci. 1999;895:56–79. doi: 10.1111/j.1749-6632.1999.tb08077.x. [DOI] [PubMed] [Google Scholar]
  19. James N. H., Soames A. R., Roberts R. A. Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphlathate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB). Arch Toxicol. 1998 Dec;72(12):784–790. doi: 10.1007/s002040050574. [DOI] [PubMed] [Google Scholar]
  20. Jones H. B., Eldridge S. R., Butterworth B. E., Foster J. R. Measures of cell replication in risk/safety assessment of xenobiotic-induced, nongenotoxic carcinogenesis. Regul Toxicol Pharmacol. 1996 Apr;23(2):117–127. doi: 10.1006/rtph.1996.0033. [DOI] [PubMed] [Google Scholar]
  21. Kanerva R. L., Ridder G. M., Lefever F. R., Alden C. L. Comparison of short-term renal effects due to oral administration of decalin or d-limonene in young adult male Fischer-344 rats. Food Chem Toxicol. 1987 May;25(5):345–353. doi: 10.1016/0278-6915(87)90167-0. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lake B. G., Cunninghame M. E., Price R. J. Comparison of the hepatic and renal effects of 1,4-dichlorobenzene in the rat and mouse. Fundam Appl Toxicol. 1997 Sep;39(1):67–75. doi: 10.1006/faat.1997.2350. [DOI] [PubMed] [Google Scholar]
  24. Lake B. G., Kozlen S. L., Evans J. G., Gray T. J., Young P. J., Gangolli S. D. Effect of prolonged administration of clofibric acid and di-(2-ethylhexyl)phthalate on hepatic enzyme activities and lipid peroxidation in the rat. Toxicology. 1987 May;44(2):213–228. doi: 10.1016/0300-483x(87)90151-x. [DOI] [PubMed] [Google Scholar]
  25. Lake B. G., Price R. J., Cunninghame M. E., Walters D. G. Comparison of the effects of cinnamyl anthranilate on hepatic peroxisome proliferation and cell replication in the rat and mouse. Fundam Appl Toxicol. 1997 Sep;39(1):60–66. doi: 10.1006/faat.1997.2340. [DOI] [PubMed] [Google Scholar]
  26. Marsman D. S., Cattley R. C., Conway J. G., Popp J. A. Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) in rats. Cancer Res. 1988 Dec 1;48(23):6739–6744. [PubMed] [Google Scholar]
  27. McClain R. M., Levin A. A., Posch R., Downing J. C. The effect of phenobarbital on the metabolism and excretion of thyroxine in rats. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):216–228. doi: 10.1016/0041-008x(89)90004-5. [DOI] [PubMed] [Google Scholar]
  28. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  29. Odum J., Green T., Foster J. R., Hext P. M. The role of trichloracetic acid and peroxisome proliferation in the differences in carcinogenicity of perchloroethylene in the mouse and rat. Toxicol Appl Pharmacol. 1988 Jan;92(1):103–112. doi: 10.1016/0041-008x(88)90232-3. [DOI] [PubMed] [Google Scholar]
  30. Purchase I. F. Validation of tests for carcinogenicity. IARC Sci Publ. 1980;(27):343–349. [PubMed] [Google Scholar]
  31. Robinson D. The International Life Sciences Institute's role in the evaluation of alternative methodologies for the assessment of carcinogenic risk. Toxicol Pathol. 1998 Jul-Aug;26(4):474–475. doi: 10.1177/019262339802600402. [DOI] [PubMed] [Google Scholar]
  32. Soames A. R., Lavender D., Foster J. R., Williams S. M., Wheeldon E. B. Image analysis of bromodeoxyuridine (BrdU) staining for measurement of S-phase in rat and mouse liver. J Histochem Cytochem. 1994 Jul;42(7):939–944. doi: 10.1177/42.7.8014477. [DOI] [PubMed] [Google Scholar]
  33. Soucek P., Gut I. Cytochromes P-450 in rats: structures, functions, properties and relevant human forms. Xenobiotica. 1992 Jan;22(1):83–103. doi: 10.3109/00498259209053106. [DOI] [PubMed] [Google Scholar]
  34. Spalding J. W., French J. E., Stasiewicz S., Furedi-Machacek M., Conner F., Tice R. R., Tennant R. W. Responses of transgenic mouse lines p53(+/-) and Tg.AC to agents tested in conventional carcinogenicity bioassays. Toxicol Sci. 2000 Feb;53(2):213–223. doi: 10.1093/toxsci/53.2.213. [DOI] [PubMed] [Google Scholar]
  35. Stonard M. D., Phillips P. G., Foster J. R., Simpson M. G., Lock E. A. Alpha 2U-globulin: measurement in rat kidney following administration of 2,2,4-trimethylpentane. Toxicology. 1986 Oct;41(2):161–168. doi: 10.1016/0300-483x(86)90197-6. [DOI] [PubMed] [Google Scholar]
  36. Tennant R. W., Elwell M. R., Spalding J. W., Griesemer R. A. Evidence that toxic injury is not always associated with induction of chemical carcinogenesis. Mol Carcinog. 1991;4(6):420–440. doi: 10.1002/mc.2940040604. [DOI] [PubMed] [Google Scholar]
  37. Tennant R. W., French J. E., Spalding J. W. Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models. Environ Health Perspect. 1995 Oct;103(10):942–950. doi: 10.1289/ehp.95103942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Viswalingam A., Caldwell J. Cinnamyl anthranilate causes coinduction of hepatic microsomal and peroxisomal enzymes in mouse but not rat. Toxicol Appl Pharmacol. 1997 Feb;142(2):338–347. doi: 10.1006/taap.1996.8043. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES