Abstract
Factors controlling the transfer of potentially toxic chemicals in the breast milk of nursing mothers include both chemical characteristics, such as lipophilicity, and physiologic changes during lactation. Physiologically based pharmacokinetic (PBPK) models can aid in the prediction of infant exposure via breast milk. Benefits of these quantitative models include the ability to account for changing maternal physiology and transfer kinetics, as well as the chemical-specific characteristics, in order to produce more accurate estimates of neonatal risk. A recently developed PBPK model for perchlorate and iodide kinetics in the lactating and neonatal rat demonstrates the utility of PBPK modeling in predicting maternal and neonatal distribution of these two compounds. This model incorporates time-dependent changes in physiologic characteristics and includes interactions between iodide and perchlorate that alter the distribution and kinetics of iodide.
Full Text
The Full Text of this article is available as a PDF (526.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham K., Päpke O., Gross A., Kordonouri O., Wiegand S., Wahn U., Helge H. Time course of PCDD/PCDF/PCB concentrations in breast-feeding mothers and their infants. Chemosphere. 1998 Oct-Nov;37(9-12):1731–1741. doi: 10.1016/s0045-6535(98)00238-0. [DOI] [PubMed] [Google Scholar]
- Amin-Zaki L., Elhassani S., Majeed M. A., Clarkson T. W., Doherty R. A., Greenwood M. R., Giovanoli-Jakubczak T. Perinatal methylmercury poisoning in Iraq. Am J Dis Child. 1976 Oct;130(10):1070–1076. doi: 10.1001/archpedi.1976.02120110032004. [DOI] [PubMed] [Google Scholar]
- Andersen M. E., Gearhart J. M., Clewell H. J., 3rd Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese. Neurotoxicology. 1999 Apr-Jun;20(2-3):161–171. [PubMed] [Google Scholar]
- Anderson P. O. Drug use during breast-feeding. Clin Pharm. 1991 Aug;10(8):594–624. [PubMed] [Google Scholar]
- Boersma E. R., Lanting C. I. Environmental exposure to polychlorinated biphenyls (PCBs) and dioxins. Consequences for longterm neurological and cognitive development of the child lactation. Adv Exp Med Biol. 2000;478:271–287. [PubMed] [Google Scholar]
- Breitzka R. L., Sandritter T. L., Hatzopoulos F. K. Principles of drug transfer into breast milk and drug disposition in the nursing infant. J Hum Lact. 1997 Jun;13(2):155–158. doi: 10.1177/089033449701300219. [DOI] [PubMed] [Google Scholar]
- Byczkowski J. Z., Fisher J. W. A computer program linking physiologically based pharmacokinetic model with cancer risk assessment for breast-fed infants. Comput Methods Programs Biomed. 1995 Feb;46(2):155–163. doi: 10.1016/0169-2607(94)01616-n. [DOI] [PubMed] [Google Scholar]
- Byczkowski J. Z., Fisher J. W. Lactational transfer of tetrachloroethylene in rats. Risk Anal. 1994 Jun;14(3):339–349. doi: 10.1111/j.1539-6924.1994.tb00250.x. [DOI] [PubMed] [Google Scholar]
- Byczkowski J. Z., Lipscomb J. C. Physiologically based pharmacokinetic modeling of the lactational transfer of methylmercury. Risk Anal. 2001 Oct;21(5):869–882. doi: 10.1111/0272-4332.215158. [DOI] [PubMed] [Google Scholar]
- Clewell H. J., Gearhart J. M., Gentry P. R., Covington T. R., VanLandingham C. B., Crump K. S., Shipp A. M. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Anal. 1999 Aug;19(4):547–558. doi: 10.1023/a:1007017116171. [DOI] [PubMed] [Google Scholar]
- Czaja K., Ludwicki J. K., Góralczyk K., Struciński P. Relationship between two consecutive lactations and fat level in persistent organochlorine compound concentrations in human breast milk. Chemosphere. 2001 May-Jun;43(4-7):889–893. doi: 10.1016/s0045-6535(00)00449-5. [DOI] [PubMed] [Google Scholar]
- Dydek G. J., Blue P. W. Human breast milk excretion of iodine-131 following diagnostic and therapeutic administration to a lactating patient with Graves' disease. J Nucl Med. 1988 Mar;29(3):407–410. [PubMed] [Google Scholar]
- Emery W. B., 3rd, Canolty N. L., Aitchison J. M., Dunkley W. L. Influence of sampling on fatty acid composition of human milk. Am J Clin Nutr. 1978 Jul;31(7):1127–1130. doi: 10.1093/ajcn/31.7.1127. [DOI] [PubMed] [Google Scholar]
- Fisher J. W., Whittaker T. A., Taylor D. H., Clewell H. J., 3rd, Andersen M. E. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol. 1989 Jul;99(3):395–414. doi: 10.1016/0041-008x(89)90149-x. [DOI] [PubMed] [Google Scholar]
- Fitzgerald E. F., Hwang S. A., Bush B., Cook K., Worswick P. Fish consumption and breast milk PCB concentrations among Mohawk women at Akwesasne. Am J Epidemiol. 1998 Jul 15;148(2):164–172. doi: 10.1093/oxfordjournals.aje.a009620. [DOI] [PubMed] [Google Scholar]
- Fujita M., Takabatake E. Mercury levels in human maternal and neonatal blood, hair and milk. Bull Environ Contam Toxicol. 1977 Aug;18(2):205–209. doi: 10.1007/BF01686068. [DOI] [PubMed] [Google Scholar]
- Gallenberg L. A., Vodicnik M. J. Transfer of persistent chemicals in milk. Drug Metab Rev. 1989;21(2):277–317. doi: 10.3109/03602538909029943. [DOI] [PubMed] [Google Scholar]
- Grandjean P., Jørgensen P. J., Weihe P. Human milk as a source of methylmercury exposure in infants. Environ Health Perspect. 1994 Jan;102(1):74–77. doi: 10.1289/ehp.9410274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddow J. E., Palomaki G. E., Allan W. C., Williams J. R., Knight G. J., Gagnon J., O'Heir C. E., Mitchell M. L., Hermos R. J., Waisbren S. E. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999 Aug 19;341(8):549–555. doi: 10.1056/NEJM199908193410801. [DOI] [PubMed] [Google Scholar]
- Hall B. Changing composition of human milk and early development of an appetite control. Lancet. 1975 Apr 5;1(7910):779–781. doi: 10.1016/s0140-6736(75)92440-x. [DOI] [PubMed] [Google Scholar]
- Hallén I. P., Jorhem L., Lagerkvist B. J., Oskarsson A. Lead and cadmium levels in human milk and blood. Sci Total Environ. 1995 Apr 21;166:149–155. doi: 10.1016/0048-9697(95)04523-4. [DOI] [PubMed] [Google Scholar]
- Harris C. A., Woolridge M. W., Hay A. W. Factors affecting the transfer of organochlorine pesticide residues to breastmilk. Chemosphere. 2001 Apr;43(2):243–256. doi: 10.1016/s0045-6535(00)00149-1. [DOI] [PubMed] [Google Scholar]
- KNOWLES J. A. EXCRETION OF DRUGS IN MILK--A REVIEW. J Pediatr. 1965 Jun;66:1068–1082. doi: 10.1016/s0022-3476(65)80094-4. [DOI] [PubMed] [Google Scholar]
- Mes J., Davies D. J., Doucet J., Weber D., McMullen E. Levels of chlorinated hydrocarbon residues in Canadian human breast milk and their relationship to some characteristics of the donors. Food Addit Contam. 1993 Jul-Aug;10(4):429–441. doi: 10.1080/02652039309374166. [DOI] [PubMed] [Google Scholar]
- Oo C. Y., Kuhn R. J., Desai N., McNamara P. J. Active transport of cimetidine into human milk. Clin Pharmacol Ther. 1995 Nov;58(5):548–555. doi: 10.1016/0009-9236(95)90175-2. [DOI] [PubMed] [Google Scholar]
- Oskarsson A., Palminger Hallén I., Sundberg J. Exposure to toxic elements via breast milk. Analyst. 1995 Mar;120(3):765–770. doi: 10.1039/an9952000765. [DOI] [PubMed] [Google Scholar]
- Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ Health Perspect. 1994 Jun;102 (Suppl 2):125–130. doi: 10.1289/ehp.94102125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen F., Linzell J. L. The acetylation of sulphanilamide by mammary tissue of lactating goats. Biochem Pharmacol. 1967 May;16(5):918–919. doi: 10.1016/0006-2952(67)90067-6. [DOI] [PubMed] [Google Scholar]
- Rogan W. J., Gladen B. C., McKinney J. D., Carreras N., Hardy P., Thullen J., Tingelstad J., Tully M. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation. Am J Public Health. 1986 Feb;76(2):172–177. doi: 10.2105/ajph.76.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelley M. L., Andersen M. E., Fisher J. W. An inhalation distribution model for the lactating mother and nursing child. Toxicol Lett. 1988 Oct;43(1-3):23–29. doi: 10.1016/0378-4274(88)90018-5. [DOI] [PubMed] [Google Scholar]
- Stastny D., Vogel R. S., Picciano M. F. Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. Am J Clin Nutr. 1984 Jun;39(6):872–878. doi: 10.1093/ajcn/39.6.872. [DOI] [PubMed] [Google Scholar]
- Stewart P., Darvill T., Lonky E., Reihman J., Pagano J., Bush B. Assessment of prenatal exposure to PCBs from maternal consumption of Great Lakes fish: an analysis of PCB pattern and concentration. Environ Res. 1999 Feb;80(2 Pt 2):S87–S96. doi: 10.1006/enrs.1998.3905. [DOI] [PubMed] [Google Scholar]
- Wilson J. T., Brown R. D., Cherek D. R., Dailey J. W., Hilman B., Jobe P. C., Manno B. R., Manno J. E., Redetzki H. M., Stewart J. J. Drug excretion in human breast milk: principles, pharmacokinetics and projected consequences. Clin Pharmacokinet. 1980 Jan-Feb;5(1):1–66. doi: 10.2165/00003088-198005010-00001. [DOI] [PubMed] [Google Scholar]
- Wilson J. T., Brown R. D., Hinson J. L., Dailey J. W. Pharmacokinetic pitfalls in the estimation of the breast milk/plasma ratio for drugs. Annu Rev Pharmacol Toxicol. 1985;25:667–689. doi: 10.1146/annurev.pa.25.040185.003315. [DOI] [PubMed] [Google Scholar]
- Wolff M. S. Occupationally derived chemicals in breast milk. Am J Ind Med. 1983;4(1-2):259–281. [PubMed] [Google Scholar]