Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jul;110(7):665–670. doi: 10.1289/ehp.02110665

Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production.

E William Spannhake 1, Sekhar P M Reddy 1, David B Jacoby 1, Xiao-Ying Yu 1, Bahman Saatian 1, Jingyan Tian 1
PMCID: PMC1240912  PMID: 12117643

Abstract

Of the several factors believed to exacerbate asthmatic symptoms, air pollution and viral infections are considered to be particularly important. Although evidence indicates that each of these respiratory insults individually can increase asthma severity in susceptible individuals, we know little about the extent to which exposure to environmental oxidant pollutants can influence the course of respiratory viral infection and its associated inflammation. To investigate the interaction of these two stimuli within their common epithelial cell targets in the upper and lower respiratory tracks, we infected primary human nasal epithelial cells and cells of the BEAS-2B line grown at the air-liquid interface with human rhinovirus type 16 (RV16) and exposed them to NO2 (2.0 ppm) or O3 (0.2 ppm) for 3 hr. Independently, RV16, NO2, and O3 rapidly increased release of the inflammatory cytokine interleukin-8 through oxidant-dependent mechanisms. The combined effect of RV16 and oxidant ranged from 42% to 250% greater than additive for NO2 and from 41% to 67% for O3. We abrogated these effects by treating the cells with the antioxidant N-acetylcysteine. Surface expression of intercellular adhesion molecule 1 (ICAM-1) underwent additive enhancement in response to combined stimulation. These data indicate that oxidant pollutants can amplify the generation of proinflammatory cytokines by RV16-infected cells and suggest that virus-induced inflammation in upper and lower airways may be exacerbated by concurrent exposure to ambient levels of oxidants commonly encountered the indoor and outdoor environments.

Full Text

The Full Text of this article is available as a PDF (542.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardin P. G., Johnston S. L., Pattemore P. K. Viruses as precipitants of asthma symptoms. II. Physiology and mechanisms. Clin Exp Allergy. 1992 Sep;22(9):809–822. doi: 10.1111/j.1365-2222.1992.tb02825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bardin P. G., Johnston S. L., Sanderson G., Robinson B. S., Pickett M. A., Fraenkel D. J., Holgate S. T. Detection of rhinovirus infection of the nasal mucosa by oligonucleotide in situ hybridization. Am J Respir Cell Mol Biol. 1994 Feb;10(2):207–213. doi: 10.1165/ajrcmb.10.2.8110476. [DOI] [PubMed] [Google Scholar]
  3. Bergofsky E. H. The lung mucosa: a critical environmental battleground. Am J Med. 1991 Oct 21;91(4A):4S–10S. doi: 10.1016/0002-9343(91)90254-u. [DOI] [PubMed] [Google Scholar]
  4. Biagioli M. C., Kaul P., Singh I., Turner R. B. The role of oxidative stress in rhinovirus induced elaboration of IL-8 by respiratory epithelial cells. Free Radic Biol Med. 1999 Feb;26(3-4):454–462. doi: 10.1016/s0891-5849(98)00233-0. [DOI] [PubMed] [Google Scholar]
  5. Bloemen P. G., van den Tweel M. C., Henricks P. A., Engels F., Wagenaar S. S., Rutten A. A., Nijkamp F. P. Expression and modulation of adhesion molecules on human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1993 Dec;9(6):586–593. doi: 10.1165/ajrcmb/9.6.586. [DOI] [PubMed] [Google Scholar]
  6. DeForge L. E., Preston A. M., Takeuchi E., Kenney J., Boxer L. A., Remick D. G. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993 Dec 5;268(34):25568–25576. [PubMed] [Google Scholar]
  7. Devalia J. L., Rusznak C., Wang J., Khair O. A., Abdelaziz M. M., Calderón M. A., Davies R. J. Air pollutants and respiratory hypersensitivity. Toxicol Lett. 1996 Aug;86(2-3):169–176. doi: 10.1016/0378-4274(96)03687-9. [DOI] [PubMed] [Google Scholar]
  8. Fraenkel D. J., Bardin P. G., Sanderson G., Lampe F., Johnston S. L., Holgate S. T. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):879–886. doi: 10.1164/ajrccm/151.3_Pt_1.879. [DOI] [PubMed] [Google Scholar]
  9. Janssen-Heininger Y. M., Macara I., Mossman B. T. Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kappaB: requirement of Ras/mitogen-activated protein kinases in the activation of NF-kappaB by oxidants. Am J Respir Cell Mol Biol. 1999 May;20(5):942–952. doi: 10.1165/ajrcmb.20.5.3452. [DOI] [PubMed] [Google Scholar]
  10. Jaspers I., Flescher E., Chen L. C. Ozone-induced IL-8 expression and transcription factor binding in respiratory epithelial cells. Am J Physiol. 1997 Mar;272(3 Pt 1):L504–L511. doi: 10.1152/ajplung.1997.272.3.L504. [DOI] [PubMed] [Google Scholar]
  11. Johnston S. L., Papi A., Bates P. J., Mastronarde J. G., Monick M. M., Hunninghake G. W. Low grade rhinovirus infection induces a prolonged release of IL-8 in pulmonary epithelium. J Immunol. 1998 Jun 15;160(12):6172–6181. [PubMed] [Google Scholar]
  12. Johnston S. L., Pattemore P. K., Sanderson G., Smith S., Lampe F., Josephs L., Symington P., O'Toole S., Myint S. H., Tyrrell D. A. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ. 1995 May 13;310(6989):1225–1229. doi: 10.1136/bmj.310.6989.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krishna M. T., Chauhan A. J., Frew A. J., Holgate S. T. Toxicological mechanisms underlying oxidant pollutant-induced airway injury. Rev Environ Health. 1998 Jan-Jun;13(1-2):59–71. [PubMed] [Google Scholar]
  14. Kulle T. J., Clements M. L. Susceptibility to virus infection with exposure to nitrogen dioxide. Res Rep Health Eff Inst. 1988 Jan;(15):5–21. [PubMed] [Google Scholar]
  15. Kunsch C., Lang R. K., Rosen C. A., Shannon M. F. Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol. 1994 Jul 1;153(1):153–164. [PubMed] [Google Scholar]
  16. Mastronarde J. G., Monick M. M., Mukaida N., Matsushima K., Hunninghake G. W. Activator protein-1 is the preferred transcription factor for cooperative interaction with nuclear factor-kappaB in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium. J Infect Dis. 1998 May;177(5):1275–1281. doi: 10.1086/515279. [DOI] [PubMed] [Google Scholar]
  17. Matsusaka T., Fujikawa K., Nishio Y., Mukaida N., Matsushima K., Kishimoto T., Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10193–10197. doi: 10.1073/pnas.90.21.10193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Metinko A. P., Kunkel S. L., Standiford T. J., Strieter R. M. Anoxia-hyperoxia induces monocyte-derived interleukin-8. J Clin Invest. 1992 Sep;90(3):791–798. doi: 10.1172/JCI115953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mukaida N., Mahe Y., Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990 Dec 5;265(34):21128–21133. [PubMed] [Google Scholar]
  20. Nicholson K. G., Kent J., Ireland D. C. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993 Oct 16;307(6910):982–986. doi: 10.1136/bmj.307.6910.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okamoto S., Mukaida N., Yasumoto K., Rice N., Ishikawa Y., Horiguchi H., Murakami S., Matsushima K. The interleukin-8 AP-1 and kappa B-like sites are genetic end targets of FK506-sensitive pathway accompanied by calcium mobilization. J Biol Chem. 1994 Mar 18;269(11):8582–8589. [PubMed] [Google Scholar]
  22. Papadopoulos N. G., Bates P. J., Bardin P. G., Papi A., Leir S. H., Fraenkel D. J., Meyer J., Lackie P. M., Sanderson G., Holgate S. T. Rhinoviruses infect the lower airways. J Infect Dis. 2000 Jun 5;181(6):1875–1884. doi: 10.1086/315513. [DOI] [PubMed] [Google Scholar]
  23. Peden D. B. Mechanisms of pollution-induced airway disease: in vivo studies. Allergy. 1997;52(38 Suppl):37–58. doi: 10.1111/j.1398-9995.1997.tb04869.x. [DOI] [PubMed] [Google Scholar]
  24. Rakes G. P., Arruda E., Ingram J. M., Hoover G. E., Zambrano J. C., Hayden F. G., Platts-Mills T. A., Heymann P. W. Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. IgE and eosinophil analyses. Am J Respir Crit Care Med. 1999 Mar;159(3):785–790. doi: 10.1164/ajrccm.159.3.9801052. [DOI] [PubMed] [Google Scholar]
  25. Roebuck K. A. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med. 1999 Sep;4(3):223–230. doi: 10.3892/ijmm.4.3.223. [DOI] [PubMed] [Google Scholar]
  26. Rose R. M., Fuglestad J. M., Skornik W. A., Hammer S. M., Wolfthal S. F., Beck B. D., Brain J. D. The pathophysiology of enhanced susceptibility to murine cytomegalovirus respiratory infection during short-term exposure to 5 ppm nitrogen dioxide. Am Rev Respir Dis. 1988 Apr;137(4):912–917. doi: 10.1164/ajrccm/137.4.912. [DOI] [PubMed] [Google Scholar]
  27. Sanders S. P., Kim J., Connolly K. R., Porter J. D., Siekierski E. S., Proud D. Nitric oxide inhibits rhinovirus-induced granulocyte macrophage colony-stimulating factor production in bronchial epithelial cells. Am J Respir Cell Mol Biol. 2001 Mar;24(3):317–325. doi: 10.1165/ajrcmb.24.3.4131. [DOI] [PubMed] [Google Scholar]
  28. Sanders S. P., Siekierski E. S., Porter J. D., Richards S. M., Proud D. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol. 1998 Feb;72(2):934–942. doi: 10.1128/jvi.72.2.934-942.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schiff L. J. Effect of nitrogen dioxide on influenza virus infection in hamster trachea organ culture. Proc Soc Exp Biol Med. 1977 Dec;156(3):546–549. doi: 10.3181/00379727-156-39977. [DOI] [PubMed] [Google Scholar]
  30. Sethi S. K., Bianco A., Allen J. T., Knight R. A., Spiteri M. A. Interferon-gamma (IFN-gamma) down-regulates the rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) on human airway epithelial cells. Clin Exp Immunol. 1997 Dec;110(3):362–369. doi: 10.1046/j.1365-2249.1997.4221440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stein B., Baldwin A. S., Jr Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B. Mol Cell Biol. 1993 Nov;13(11):7191–7198. doi: 10.1128/mcb.13.11.7191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Subauste M. C., Jacoby D. B., Richards S. M., Proud D. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest. 1995 Jul;96(1):549–557. doi: 10.1172/JCI118067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takahashi N., Yu X. Y., Schofield B. H., Kleeberger S. R., Scott A. L., Hasegawa S., Spannhake E. W. Expression of ICAM-1 in airway epithelium after acute ozone exposure in the mouse. J Appl Physiol (1985) 1995 Nov;79(5):1753–1761. doi: 10.1152/jappl.1995.79.5.1753. [DOI] [PubMed] [Google Scholar]
  34. Terajima M., Yamaya M., Sekizawa K., Okinaga S., Suzuki T., Yamada N., Nakayama K., Ohrui T., Oshima T., Numazaki Y. Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL-1beta. Am J Physiol. 1997 Oct;273(4 Pt 1):L749–L759. doi: 10.1152/ajplung.1997.273.4.L749. [DOI] [PubMed] [Google Scholar]
  35. Wright D. T., Cohn L. A., Li H., Fischer B., Li C. M., Adler K. B. Interactions of oxygen radicals with airway epithelium. Environ Health Perspect. 1994 Dec;102 (Suppl 10):85–90. doi: 10.1289/ehp.94102s1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yasumoto K., Okamoto S., Mukaida N., Murakami S., Mai M., Matsushima K. Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem. 1992 Nov 5;267(31):22506–22511. [PubMed] [Google Scholar]
  37. van Kempen M., Bachert C., Van Cauwenberge P. An update on the pathophysiology of rhinovirus upper respiratory tract infections. Rhinology. 1999 Sep;37(3):97–103. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES