Abstract
We used real-time breath measurement technology to investigate the suitability of some volatile organic compounds (VOCs) as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to tobacco smoke. Experiments were conducted with five smoker/nonsmoker pairs. The target VOCs included benzene, 1,3-butadiene, and the cigarette smoke biomarker 2,5-dimethylfuran. This study includes what we believe to be the first measurements of 1,3-butadiene in smokers' and nonsmokers' breath. The 1,3-butadiene and 2,5-dimethylfuran peak levels in the smokers' breath were similar (360 and 376 microg/m(3), respectively); the average benzene peak level was 522 microg/m(3). We found higher peak values of the target chemicals and shorter residence times in the body than previously reported, probably because of the improved time resolution made possible by the continuous breath measurement method. The real-time breath analyzer also showed the presence of the chemicals after exposure in the breath of the nonsmokers, but at greatly reduced levels. Single breath samples collected in evacuated canisters and analyzed independently with gas chromatography/mass spectrometry confirmed the presence of the target compounds in the postexposure breath of the nonsmokers but indicated that there was some contamination of the breath analyzer measurements. This was likely caused by desorption of organics from condensed tar in the analyzer tubing and on the quartz fiber filter used to remove particles. We used the decay data from the smokers to estimate residence times for the target chemicals. A two-compartment exponential model generally gave a better fit to the experimental decay data from the smokers than a single-compartment model. Residence times for benzene, 1,3-butadiene, and 2,5-dimethylfuran ranged from 0.5 (1,3-butadiene) to 0.9 min (benzene) for tau1 and were essentially constant (14 min) for tau2. These findings will be useful in models of environmental tobacco smoke exposure and risk.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley D. L., Bonin M. A., Hamar B., McGeehin M. Using the blood concentration of 2,5-dimethylfuran as a marker for smoking. Int Arch Occup Environ Health. 1996;68(3):183–187. doi: 10.1007/BF00381629. [DOI] [PubMed] [Google Scholar]
- Berlin M., Gage J. C., Gullberg B., Holm S., Knutsson P., Eng C., Tunek A. Breath concentration as an index of the health risk from benzene. Studies on the accumulation and clearance of inhaled benzene. Scand J Work Environ Health. 1980 Jun;6(2):104–111. doi: 10.5271/sjweh.2625. [DOI] [PubMed] [Google Scholar]
- Bond J. A., Dahl A. R., Henderson R. F., Birnbaum L. S. Species differences in the distribution of inhaled butadiene in tissues. Am Ind Hyg Assoc J. 1987 Oct;48(10):867–872. doi: 10.1080/15298668791385723. [DOI] [PubMed] [Google Scholar]
- Brugnone F., Perbellini L., Faccini G. B., Pasini F., Maranelli G., Romeo L., Gobbi M., Zedde A. Breath and blood levels of benzene, toluene, cumene and styrene in non-occupational exposure. Int Arch Occup Environ Health. 1989;61(5):303–311. doi: 10.1007/BF00409385. [DOI] [PubMed] [Google Scholar]
- Brunnemann K. D., Kagan M. R., Cox J. E., Hoffmann D. Analysis of 1,3-butadiene and other selected gas-phase components in cigarette mainstream and sidestream smoke by gas chromatography-mass selective detection. Carcinogenesis. 1990 Oct;11(10):1863–1868. doi: 10.1093/carcin/11.10.1863. [DOI] [PubMed] [Google Scholar]
- Brunnemann K. D., Kagan M. R., Cox J. E., Hoffmann D. Determination of benzene, toluene and 1,3-butadiene in cigarette smoke by GC-MDS. Exp Pathol. 1989;37(1-4):108–113. doi: 10.1016/s0232-1513(89)80026-x. [DOI] [PubMed] [Google Scholar]
- Buckley T. J., Prah J. D., Ashley D., Zweidinger R. A., Wallace L. A. Body burden measurements and models to assess inhalation exposure to methyl tertiary butyl ether (MTBE). J Air Waste Manag Assoc. 1997 Jul;47(7):739–752. doi: 10.1080/10473289.1997.10463934. [DOI] [PubMed] [Google Scholar]
- Daisey J. M., Mahanama K. R., Hodgson A. T. Toxic volatile organic compounds in simulated environmental tobacco smoke: emission factors for exposure assessment. J Expo Anal Environ Epidemiol. 1998 Jul-Sep;8(3):313–334. [PubMed] [Google Scholar]
- Fiserova-Bergerova V., Vlach J. Timing of sample collection for biological monitoring of occupational exposure. Ann Occup Hyg. 1997 Jun;41(3):345–353. doi: 10.1016/S0003-4878(96)00180-9. [DOI] [PubMed] [Google Scholar]
- Fontham E. T., Correa P., Reynolds P., Wu-Williams A., Buffler P. A., Greenberg R. S., Chen V. W., Alterman T., Boyd P., Austin D. F. Environmental tobacco smoke and lung cancer in nonsmoking women. A multicenter study. JAMA. 1994 Jun 8;271(22):1752–1759. [PubMed] [Google Scholar]
- Gordon S. M. Identification of exposure markers in smokers' breath. J Chromatogr. 1990 Jul 6;511:291–302. doi: 10.1016/s0021-9673(01)93292-3. [DOI] [PubMed] [Google Scholar]
- Gordon S. M., Wallace L. A., Callahan P. J., Kenny D. V., Brinkman M. C. Effect of water temperature on dermal exposure to chloroform. Environ Health Perspect. 1998 Jun;106(6):337–345. doi: 10.1289/ehp.98106337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindstrom A. B., Pleil J. D. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling. J Air Waste Manag Assoc. 1996 Jul;46:676–682. doi: 10.1080/10473289.1996.10467502. [DOI] [PubMed] [Google Scholar]
- Miller S. L., Branoff S., Nazaroff W. W. Exposure to toxic air contaminants in environmental tobacco smoke: an assessment for California based on personal monitoring data. J Expo Anal Environ Epidemiol. 1998 Jul-Sep;8(3):287–311. [PubMed] [Google Scholar]
- Neutel C. I., Buck C. Effect of smoking during pregnancy on the risk of cancer in children. J Natl Cancer Inst. 1971 Jul;47(1):59–63. [PubMed] [Google Scholar]
- Perbellini L., Faccini G. B., Pasini F., Cazzoli F., Pistoia S., Rosellini R., Valsecchi M., Brugnone F. Environmental and occupational exposure to benzene by analysis of breath and blood. Br J Ind Med. 1988 May;45(5):345–352. doi: 10.1136/oem.45.5.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pleil J. D., Lindstrom A. B. Collection of a single alveolar exhaled breath for volatile organic compounds analysis. Am J Ind Med. 1995 Jul;28(1):109–121. doi: 10.1002/ajim.4700280110. [DOI] [PubMed] [Google Scholar]
- Raymer J. H., Pellizzari E. D., Thomas K. W., Cooper S. D. Elimination of volatile organic compounds in breath after exposure to occupational and environmental microenvironments. J Expo Anal Environ Epidemiol. 1991 Oct;1(4):439–451. [PubMed] [Google Scholar]
- Sandler D. P., Everson R. B., Wilcox A. J., Browder J. P. Cancer risk in adulthood from early life exposure to parents' smoking. Am J Public Health. 1985 May;75(5):487–492. doi: 10.2105/ajph.75.5.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasco A. J., Vainio H. From in utero and childhood exposure to parental smoking to childhood cancer: a possible link and the need for action. Hum Exp Toxicol. 1999 Apr;18(4):192–201. doi: 10.1191/096032799678839905. [DOI] [PubMed] [Google Scholar]
- Sato A., Nakajima T., Fujiwara Y., Hirosawa K. Pharmacokinetics of benzene and toluene. Int Arch Arbeitsmed. 1974;33(3):169–182. doi: 10.1007/BF00538916. [DOI] [PubMed] [Google Scholar]
- Stjernfeldt M., Berglund K., Lindsten J., Ludvigsson J. Maternal smoking during pregnancy and risk of childhood cancer. Lancet. 1986 Jun 14;1(8494):1350–1352. doi: 10.1016/s0140-6736(86)91664-8. [DOI] [PubMed] [Google Scholar]
- Wallace L. A. Major sources of benzene exposure. Environ Health Perspect. 1989 Jul;82:165–169. doi: 10.1289/ehp.8982165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace L. A., Nelson W. C., Pellizzari E. D., Raymer J. H. Uptake and decay of volatile organic compounds at environmental concentrations: application of a four-compartment model to a chamber study of five human subjects. J Expo Anal Environ Epidemiol. 1997 Apr-Jun;7(2):141–163. [PubMed] [Google Scholar]
- Wallace L. A., Pellizzari E. D., Hartwell T. D., Sparacino C., Whitmore R., Sheldon L., Zelon H., Perritt R. The TEAM (Total Exposure Assessment Methodology) Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota. Environ Res. 1987 Aug;43(2):290–307. doi: 10.1016/s0013-9351(87)80030-0. [DOI] [PubMed] [Google Scholar]
- Wallace L., Buckley T., Pellizzari E., Gordon S. Breath measurements as volatile organic compound biomarkers. Environ Health Perspect. 1996 Oct;104 (Suppl 5):861–869. doi: 10.1289/ehp.96104s5861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace L. Environmental exposure to benzene: an update. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1129–1136. doi: 10.1289/ehp.961041129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace L., Pellizzari E., Gordon S. A linear model relating breath concentrations to environmental exposures: application to a chamber study of four volunteers exposed to volatile organic chemicals. J Expo Anal Environ Epidemiol. 1993 Jan-Mar;3(1):75–102. [PubMed] [Google Scholar]
- Wallace L., Pellizzari E., Hartwell T. D., Perritt R., Ziegenfus R. Exposures to benzene and other volatile compounds from active and passive smoking. Arch Environ Health. 1987 Sep-Oct;42(5):272–279. doi: 10.1080/00039896.1987.9935820. [DOI] [PubMed] [Google Scholar]
- Wester R. C., Maibach H. I., Gruenke L. D., Craig J. C. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments. J Toxicol Environ Health. 1986;18(4):567–573. doi: 10.1080/15287398609530894. [DOI] [PubMed] [Google Scholar]
- Yu R., Weisel C. P. Measurement of benzene in human breath associated with an environmental exposure. J Expo Anal Environ Epidemiol. 1996 Jul-Sep;6(3):261–277. [PubMed] [Google Scholar]