Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jul;110(7):715–720. doi: 10.1289/ehp.02110715

Biologic effects induced in vitro by PM10 from three different zones of Mexico City.

Ernesto Alfaro-Moreno 1, Leticia Martínez 1, Claudia García-Cuellar 1, James C Bonner 1, J Clifford Murray 1, Irma Rosas 1, Sergio Ponce de León Rosales 1, Alvaro R Osornio-Vargas 1
PMCID: PMC1240918  PMID: 12117649

Abstract

Exposure to urban airborne particles is associated with an increase in morbidity and mortality. There is little experimental evidence of the mechanisms involved and the role of particle composition. We assessed cytotoxicity (crystal violet assay), apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) or annexin V assay], DNA breakage (comet assay), and production of proinflammatory mediators [tumor necrosis factor Alpha (TNF-Alpha), interleukin 6 (IL-6), prostaglandin E2 (PGE2)] (enzyme-linked immunosorbent assay), and E-selectin (flow cytometry) in cell lines exposed to particulate matter < 10 microm in size (PM10) obtained from the northern, central, and southern zones of Mexico City. Particle concentrations ranged from 2.5 to 160 microg/cm(2). We used epithelial, endothelial, fibroblastic, and monocytic cells and assessed DNA damage in Balb-c cells, TNF-Alpha and IL-6 production in mouse monocytes, and PGE2 in rat lung fibroblasts. We determined the expression of E-selectin in human endothelial cells and evaluated the cytotoxic potential of the PM10 samples in all cell types. PM10 from all three zones of Mexico City caused cell death, DNA breakage, and apoptosis, with particles from the north and central zones being the most toxic. All of these PM10 samples induced secretion of proinflammatory molecules, and particles from the central zone were the most potent. Endothelial cells exposed to PM10 from the three zones expressed similar E-selectin levels. Mexico City PM10 induced biologic effects dependent on the zone of origin, which could be caused by differences in the mixture or size distribution within particle samples. Our data suggest that particle composition as well as particle size should be considered in assessing the adverse effects of airborne particulate pollution.

Full Text

The Full Text of this article is available as a PDF (665.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
  2. Beeson W. L., Abbey D. E., Knutsen S. F. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study.Adventist Health Study on Smog. Environ Health Perspect. 1998 Dec;106(12):813–822. doi: 10.1289/ehp.106-1533247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett C. F., Condon T. P., Grimm S., Chan H., Chiang M. Y. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol. 1994 Apr 1;152(7):3530–3540. [PubMed] [Google Scholar]
  4. Bonner J. C., Goodell A. L., Coin P. G., Brody A. R. Chrysotile asbestos upregulates gene expression and production of alpha-receptors for platelet-derived growth factor (PDGF-AA) on rat lung fibroblasts. J Clin Invest. 1993 Jul;92(1):425–430. doi: 10.1172/JCI116584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonner J. C., Rice A. B., Lindroos P. M., O'Brien P. O., Dreher K. L., Rosas I., Alfaro-Moreno E., Osornio-Vargas A. R. Induction of the lung myofibroblast PDGF receptor system by urban ambient particles from Mexico City. Am J Respir Cell Mol Biol. 1998 Oct;19(4):672–680. doi: 10.1165/ajrcmb.19.4.3176. [DOI] [PubMed] [Google Scholar]
  6. Borja-Aburto V. H., Castillejos M., Gold D. R., Bierzwinski S., Loomis D. Mortality and ambient fine particles in southwest Mexico City, 1993-1995. Environ Health Perspect. 1998 Dec;106(12):849–855. doi: 10.1289/ehp.106-1533229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borja-Aburto V. H., Loomis D. P., Bangdiwala S. I., Shy C. M., Rascon-Pacheco R. A. Ozone, suspended particulates, and daily mortality in Mexico City. Am J Epidemiol. 1997 Feb 1;145(3):258–268. doi: 10.1093/oxfordjournals.aje.a009099. [DOI] [PubMed] [Google Scholar]
  8. Diociaiuti M., Balduzzi M., De Berardis B., Cattani G., Stacchini G., Ziemacki G., Marconi A., Paoletti L. The two PM(2.5) (fine) and PM(2.5-10) (coarse) fractions: evidence of different biological activity. Environ Res. 2001 Jul;86(3):254–262. doi: 10.1006/enrs.2001.4275. [DOI] [PubMed] [Google Scholar]
  9. Dreher K. L., Jaskot R. H., Lehmann J. R., Richards J. H., McGee J. K., Ghio A. J., Costa D. L. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health. 1997 Feb 21;50(3):285–305. [PubMed] [Google Scholar]
  10. Gorczyca W., Gong J., Ardelt B., Traganos F., Darzynkiewicz Z. The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 1993 Jul 1;53(13):3186–3192. [PubMed] [Google Scholar]
  11. Holian A., Hamilton R. F., Jr, Morandi M. T., Brown S. D., Li L. Urban particle-induced apoptosis and phenotype shifts in human alveolar macrophages. Environ Health Perspect. 1998 Mar;106(3):127–132. doi: 10.1289/ehp.98106127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Imrich A., Ning Y., Kobzik L. Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):140–150. doi: 10.1006/taap.2000.9002. [DOI] [PubMed] [Google Scholar]
  13. Kueng W., Silber E., Eppenberger U. Quantification of cells cultured on 96-well plates. Anal Biochem. 1989 Oct;182(1):16–19. doi: 10.1016/0003-2697(89)90710-0. [DOI] [PubMed] [Google Scholar]
  14. LeBoeuf R. A., Kerckaert K. A., Aardema M. J., Isfort R. J. Use of Syrian hamster embryo and BALB/c 3T3 cell transformation for assessing the carcinogenic potential of chemicals. IARC Sci Publ. 1999;(146):409–425. [PubMed] [Google Scholar]
  15. Levy J. I., Hammitt J. K., Spengler J. D. Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect. 2000 Feb;108(2):109–117. doi: 10.1289/ehp.00108109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mar T. F., Norris G. A., Koenig J. Q., Larson T. V. Associations between air pollution and mortality in Phoenix, 1995-1997. Environ Health Perspect. 2000 Apr;108(4):347–353. doi: 10.1289/ehp.00108347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Monn C., Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999 Mar 15;155(3):245–252. doi: 10.1006/taap.1998.8591. [DOI] [PubMed] [Google Scholar]
  18. Muller W. A., Randolph G. J. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol. 1999 Nov;66(5):698–704. doi: 10.1002/jlb.66.5.698. [DOI] [PubMed] [Google Scholar]
  19. Nel A. E., Diaz-Sanchez D., Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med. 2001 Jan;7(1):20–26. doi: 10.1097/00063198-200101000-00004. [DOI] [PubMed] [Google Scholar]
  20. Peters A., Döring A., Wichmann H. E., Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet. 1997 May 31;349(9065):1582–1587. doi: 10.1016/S0140-6736(97)01211-7. [DOI] [PubMed] [Google Scholar]
  21. Pope C. A., 3rd, Verrier R. L., Lovett E. G., Larson A. C., Raizenne M. E., Kanner R. E., Schwartz J., Villegas G. M., Gold D. R., Dockery D. W. Heart rate variability associated with particulate air pollution. Am Heart J. 1999 Nov;138(5 Pt 1):890–899. doi: 10.1016/s0002-8703(99)70014-1. [DOI] [PubMed] [Google Scholar]
  22. Rosas I., McCartney H. A., Payne R. W., Calderón C., Lacey J., Chapela R., Ruiz-Velazco S. Analysis of the relationships between environmental factors (aeroallergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Allergy. 1998 Apr;53(4):394–401. doi: 10.1111/j.1398-9995.1998.tb03911.x. [DOI] [PubMed] [Google Scholar]
  23. Saxon A., Diaz-Sanchez D. Diesel exhaust as a model xenobiotic in allergic inflammation. Immunopharmacology. 2000 Jul 25;48(3):325–327. doi: 10.1016/s0162-3109(00)00234-4. [DOI] [PubMed] [Google Scholar]
  24. Schwartz D. A. Does inhalation of endotoxin cause asthma? Am J Respir Crit Care Med. 2001 Feb;163(2):305–306. doi: 10.1164/ajrccm.163.2.ed2000a. [DOI] [PubMed] [Google Scholar]
  25. Schwartz J., Norris G., Larson T., Sheppard L., Claiborne C., Koenig J. Episodes of high coarse particle concentrations are not associated with increased mortality. Environ Health Perspect. 1999 May;107(5):339–342. doi: 10.1289/ehp.99107339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  27. Vermes I., Haanen C., Steffens-Nakken H., Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995 Jul 17;184(1):39–51. doi: 10.1016/0022-1759(95)00072-i. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES