Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jul;110(7):729–733. doi: 10.1289/ehp.02110729

Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water.

Joyce S Chung 1, David A Kalman 1, Lee E Moore 1, Michael J Kosnett 1, Alex P Arroyo 1, Martin Beeris 1, D N Guha Mazumder 1, Alexandra L Hernandez 1, Allan H Smith 1
PMCID: PMC1240920  PMID: 12117651

Abstract

We investigated the evidence of a familial contribution to urinary methylation patterns in families ingesting arsenic in drinking water. Arsenic methylation can be assessed by measuring urinary levels of inorganic arsenic (InAs) and its methylated metabolites, monomethylarsonate (MMA), and dimethylarsinate (DMA). Methylation activity is reflected in the ratios: InAs/methylated arsenic (InAs/metAs) and MMA/DMA. Eleven families from Chile were selected because of their long-term exposure to very high levels of arsenic in drinking water (735-762 microg/L). Each family consisted of a father, a mother, and two children. We measured urinary arsenic and its methylated metabolites for each participant (n = 44). The intraclass correlation coefficients showed that 13-52% of the variations in the methylation patterns were from being a member of a specific family. Family correlations were calculated for father-mother, parent-child, and sibling-sibling pairs. Methylation patterns correlated strongly between siblings [r = 0.78 for InAs/metAs, 95% confidence interval (CI), 0.34-0.94; r = 0.82 for MMA/DMA, 95%CI, 0.43-0.95] compared to lower correlations in father-mother pairs (r = 0.18, r = -0.01, respectively), after adjustment for total urinary arsenic, age, and sex. Family correlations were not notably altered when adjustments were made for specific blood micronutrients (methionine, homocysteine, folate, vitamin B6, selenium, and vitamin B12 potentially related to methylation. We also report on a family pedigree with high prevalence of arsenic-induced effects. Participants from this family had low InAs/metAs values, which is consistent with increased toxicity of trivalent methylated arsenic species. Despite our small sample size, we observed that methylation patterns aggregate in families and are correlated in siblings, providing evidence of a genetic basis for the variation in arsenic methylation. Larger studies with more extensive pedigrees will need to be conducted to confirm these findings.

Full Text

The Full Text of this article is available as a PDF (533.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atallah R. H., Kalman D. A. On-line photo-oxidation for the determination of organoarsenic compounds by atomic-absorption spectrometry with continuous arsine generation. Talanta. 1991 Feb;38(2):167–173. doi: 10.1016/0039-9140(91)80125-j. [DOI] [PubMed] [Google Scholar]
  2. Biggs M. L., Kalman D. A., Moore L. E., Hopenhayn-Rich C., Smith M. T., Smith A. H. Relationship of urinary arsenic to intake estimates and a biomarker of effect, bladder cell micronuclei. Mutat Res. 1997 Jun;386(3):185–195. doi: 10.1016/s1383-5742(97)00012-4. [DOI] [PubMed] [Google Scholar]
  3. Brouwer O. F., Onkenhout W., Edelbroek P. M., de Kom J. F., de Wolff F. A., Peters A. C. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin Neurol Neurosurg. 1992;94(4):307–310. doi: 10.1016/0303-8467(92)90179-7. [DOI] [PubMed] [Google Scholar]
  4. Buchet J. P., Roels H., Lauwerys R., Bruaux P., Claeys-Thoreau F., Lafontaine A., Verduyn G. Repeated surveillance of exposure to cadmium, manganese, and arsenic in school-age children living in rural, urban, and nonferrous smelter areas in Belgium. Environ Res. 1980 Jun;22(1):95–108. doi: 10.1016/0013-9351(80)90122-x. [DOI] [PubMed] [Google Scholar]
  5. Chen C. J., Wu M. M., Lee S. S., Wang J. D., Cheng S. H., Wu H. Y. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis. 1988 Sep-Oct;8(5):452–460. doi: 10.1161/01.atv.8.5.452. [DOI] [PubMed] [Google Scholar]
  6. Chiou H. Y., Hsueh Y. M., Hsieh L. L., Hsu L. I., Hsu Y. H., Hsieh F. I., Wei M. L., Chen H. C., Yang H. T., Leu L. C. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res. 1997 Jun;386(3):197–207. doi: 10.1016/s1383-5742(97)00005-7. [DOI] [PubMed] [Google Scholar]
  7. Concha G., Nermell B., Vahter M. V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ Health Perspect. 1998 Jun;106(6):355–359. doi: 10.1289/ehp.98106355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Del Razo L. M., García-Vargas G. G., Vargas H., Albores A., Gonsebatt M. E., Montero R., Ostrosky-Wegman P., Kelsh M., Cebrián M. E. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol. 1997;71(4):211–217. doi: 10.1007/s002040050378. [DOI] [PubMed] [Google Scholar]
  9. Fiskerstrand T., Refsum H., Kvalheim G., Ueland P. M. Homocysteine and other thiols in plasma and urine: automated determination and sample stability. Clin Chem. 1993 Feb;39(2):263–271. [PubMed] [Google Scholar]
  10. Henderson D. R., Friedman S. B., Harris J. D., Manning W. B., Zoccoli M. A. CEDIA, a new homogeneous immunoassay system. Clin Chem. 1986 Sep;32(9):1637–1641. [PubMed] [Google Scholar]
  11. Hopenhayn-Rich C., Biggs M. L., Kalman D. A., Moore L. E., Smith A. H. Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water. Environ Health Perspect. 1996 Nov;104(11):1200–1207. doi: 10.1289/ehp.961041200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopenhayn-Rich C., Biggs M. L., Smith A. H., Kalman D. A., Moore L. E. Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect. 1996 Jun;104(6):620–628. doi: 10.1289/ehp.96104620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsueh Y. M., Chiou H. Y., Huang Y. L., Wu W. L., Huang C. C., Yang M. H., Lue L. C., Chen G. S., Chen C. J. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev. 1997 Aug;6(8):589–596. [PubMed] [Google Scholar]
  14. Kimura M., Kanehira K., Yokoi K. Highly sensitive and simple liquid chromatographic determination in plasma of B6 vitamers, especially pyridoxal 5'-phosphate. J Chromatogr A. 1996 Jan 26;722(1-2):295–301. doi: 10.1016/0021-9673(95)00354-1. [DOI] [PubMed] [Google Scholar]
  15. Mass M. J., Tennant A., Roop B. C., Cullen W. R., Styblo M., Thomas D. J., Kligerman A. D. Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol. 2001 Apr;14(4):355–361. doi: 10.1021/tx000251l. [DOI] [PubMed] [Google Scholar]
  16. Scott M. C., Van Loon J. A., Weinshilboum R. M. Pharmacogenetics of N-methylation: heritability of human erythrocyte histamine N-methyltransferase activity. Clin Pharmacol Ther. 1988 Mar;43(3):256–262. doi: 10.1038/clpt.1988.30. [DOI] [PubMed] [Google Scholar]
  17. Smith A. H., Arroyo A. P., Mazumder D. N., Kosnett M. J., Hernandez A. L., Beeris M., Smith M. M., Moore L. E. Arsenic-induced skin lesions among Atacameño people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect. 2000 Jul;108(7):617–620. doi: 10.1289/ehp.00108617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Styblo M., Del Razo L. M., Vega L., Germolec D. R., LeCluyse E. L., Hamilton G. A., Reed W., Wang C., Cullen W. R., Thomas D. J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000 Aug;74(6):289–299. doi: 10.1007/s002040000134. [DOI] [PubMed] [Google Scholar]
  19. Vahter M., Concha G., Nermell B., Nilsson R., Dulout F., Natarajan A. T. A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol. 1995 Dec 7;293(4):455–462. doi: 10.1016/0926-6917(95)90066-7. [DOI] [PubMed] [Google Scholar]
  20. Vahter M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett. 2000 Mar 15;112-113:209–217. doi: 10.1016/s0378-4274(99)00271-4. [DOI] [PubMed] [Google Scholar]
  21. Vahter M. Methylation of inorganic arsenic in different mammalian species and population groups. Sci Prog. 1999;82(Pt 1):69–88. doi: 10.1177/003685049908200104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weinshilboum R. M., Raymond F. A., Elveback L. R., Weidman W. H. Correlation of erythrocyte catechol-O-methyltransferase activity between siblings. Nature. 1974 Dec 6;252(5483):490–491. doi: 10.1038/252490a0. [DOI] [PubMed] [Google Scholar]
  23. Weinshilboum R. Pharmacogenetics of methylation: relationship to drug metabolism. Clin Biochem. 1988 Aug;21(4):201–210. doi: 10.1016/s0009-9120(88)80002-x. [DOI] [PubMed] [Google Scholar]
  24. Yu R. C., Hsu K. H., Chen C. J., Froines J. R. Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev. 2000 Nov;9(11):1259–1262. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES