Abstract
Developing effective policy for environmental health issues requires integrating large collections of information that are diverse, highly variable, and uncertain. Despite these uncertainties in the science, decisions must be made. These decisions often have been based on risk assessment. We argue that two important features of risk assessment are to identify research needs and to provide information for decision making. One type of information that a model can provide is the sensitivity of making one decision over another on factors that drive public health risk. To achieve this goal, a risk assessment framework must be based on a description of the exposure and disease processes. Regarding exposure to waterborne pathogens, the appropriate framework is one that explicitly models the disease transmission pathways of pathogens. This approach provides a crucial link between science and policy. Two studies--a Giardia risk assessment case study and an analysis of the 1993 Milwaukee, Wisconsin, Cryptosporidium outbreak--illustrate the role that models can play in policy making.
Full Text
The Full Text of this article is available as a PDF (538.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barwick R. S., Levy D. A., Craun G. F., Beach M. J., Calderon R. L. Surveillance for waterborne-disease outbreaks--United States, 1997-1998. MMWR CDC Surveill Summ. 2000 May 26;49(4):1–21. [PubMed] [Google Scholar]
- Craun G. F. Waterborne disease outbreaks in the United States of America: causes and prevention. World Health Stat Q. 1992;45(2-3):192–199. [PubMed] [Google Scholar]
- Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41. doi: 10.1177/096228029300200103. [DOI] [PubMed] [Google Scholar]
- Eisenberg J. N., Seto E. Y., Colford J. M., Jr, Olivieri A., Spear R. C. An analysis of the Milwaukee cryptosporidiosis outbreak based on a dynamic model of the infection process. Epidemiology. 1998 May;9(3):255–263. [PubMed] [Google Scholar]
- Eisenberg J. N., Seto E. Y., Olivieri A. W., Spear R. C. Quantifying water pathogen risk in an epidemiological framework. Risk Anal. 1996 Aug;16(4):549–563. doi: 10.1111/j.1539-6924.1996.tb01100.x. [DOI] [PubMed] [Google Scholar]
- Fine P. E. Herd immunity: history, theory, practice. Epidemiol Rev. 1993;15(2):265–302. doi: 10.1093/oxfordjournals.epirev.a036121. [DOI] [PubMed] [Google Scholar]
- Fuhs O. W. A probabilistic model of bathing beach safety. Sci Total Environ. 1975 Jul;4(2):165–175. doi: 10.1016/0048-9697(75)90037-6. [DOI] [PubMed] [Google Scholar]
- Haas C. N. Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am J Epidemiol. 1983 Oct;118(4):573–582. doi: 10.1093/oxfordjournals.aje.a113662. [DOI] [PubMed] [Google Scholar]
- Kay D., Fleisher J. M., Salmon R. L., Jones F., Wyer M. D., Godfree A. F., Zelenauch-Jacquotte Z., Shore R. Predicting likelihood of gastroenteritis from sea bathing: results from randomised exposure. Lancet. 1994 Oct 1;344(8927):905–909. doi: 10.1016/s0140-6736(94)92267-5. [DOI] [PubMed] [Google Scholar]
- Koopman J. S., Longini I. M., Jr, Jacquez J. A., Simon C. P., Ostrow D. G., Martin W. R., Woodcock D. M. Assessing risk factors for transmission of infection. Am J Epidemiol. 1991 Jun 15;133(12):1199–1209. doi: 10.1093/oxfordjournals.aje.a115832. [DOI] [PubMed] [Google Scholar]
- Koopman J. S., Longini I. M., Jr The ecological effects of individual exposures and nonlinear disease dynamics in populations. Am J Public Health. 1994 May;84(5):836–842. doi: 10.2105/ajph.84.5.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy D. A., Bens M. S., Craun G. F., Calderon R. L., Herwaldt B. L. Surveillance for waterborne-disease outbreaks--United States, 1995-1996. MMWR CDC Surveill Summ. 1998 Dec 11;47(5):1–34. [PubMed] [Google Scholar]
- Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
- MacKenzie W. R., Schell W. L., Blair K. A., Addiss D. G., Peterson D. E., Hoxie N. J., Kazmierczak J. J., Davis J. P. Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: recurrence of illness and risk of secondary transmission. Clin Infect Dis. 1995 Jul;21(1):57–62. doi: 10.1093/clinids/21.1.57. [DOI] [PubMed] [Google Scholar]
- McDonald A. C., Mac Kenzie W. R., Addiss D. G., Gradus M. S., Linke G., Zembrowski E., Hurd M. R., Arrowood M. J., Lammie P. J., Priest J. W. Cryptosporidium parvum-specific antibody responses among children residing in Milwaukee during the 1993 waterborne outbreak. J Infect Dis. 2001 Mar 29;183(9):1373–1379. doi: 10.1086/319862. [DOI] [PubMed] [Google Scholar]
- Monto A. S., Koopman J. S. The Tecumseh Study. XI. Occurrence of acute enteric illness in the community. Am J Epidemiol. 1980 Sep;112(3):323–333. doi: 10.1093/oxfordjournals.aje.a112998. [DOI] [PubMed] [Google Scholar]
- Payment P., Richardson L., Siemiatycki J., Dewar R., Edwardes M., Franco E. A randomized trial to evaluate the risk of gastrointestinal disease due to consumption of drinking water meeting current microbiological standards. Am J Public Health. 1991 Jun;81(6):703–708. doi: 10.2105/ajph.81.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
