Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Aug;110(8):797–800. doi: 10.1289/ehp.02110797

Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts.

Qamar Rahman 1, Mohtashim Lohani 1, Elke Dopp 1, Heidemarie Pemsel 1, Ludwig Jonas 1, Dieter G Weiss 1, Dietmar Schiffmann 1
PMCID: PMC1240951  PMID: 12153761

Abstract

Inhaled ultrafine titanium dioxide (UF-TiO2) particles cause pronounced pulmonary inflammation, in contrast to fine TiO2. Previous studies provide evidence for the production of reactive oxygen species by alveolar macrophages, after overloading with UF-TiO2 particles and cytotoxicity of UF-TiO2 in rat lung alveolar macrophages. UF-TiO2 also causes pulmonary fibrosis and lung tumors in rats. UF-TiO2 particles are photogenotoxic, but in general, information on the genotoxicity of UF-TiO2 is still limited. We studied the potential of UF-TiO2 (particle size less than or equal to 20 nm) and fine TiO2 (particle size > 200 nm) to induce chromosomal changes, which can be monitored by the formation of micronuclei (MN) in Syrian hamster embryo (SHE) cells. We also analyzed UF-TiO2-treated cells for apoptosis induction. The MN assay revealed a significant increase in MN induction (p less than or equal to 0.05) in SHE cells after treatment with UF-TiO2 (1.0 micro g/cm2) for 12 hr (mean, 24.5 MN/1,000 cells), 24 hr (mean, 31.13 MN/1,000 cells), 48 hr (mean, 30.8 MN/1,000 cells), 66 hr (mean, 31.2 MN/1,000 cells), and 72 hr (mean, 31.3 MN/1,000 cells). Bisbenzimide staining of the fixed cells revealed typical apoptotic structures (apoptotic bodies), and the apoptosis-specific "DNA ladder pattern" resulting from internucleosomal cleavage was identified by gel electrophoresis. Furthermore, transmission electron microscopy of the exposed cells revealed the typical chromatin compaction of apoptosis.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afaq F., Abidi P., Matin R., Rahman Q. Activation of alveolar macrophages and peripheral red blood cells in rats exposed to fibers/particles. Toxicol Lett. 1998 Nov 12;99(3):175–182. doi: 10.1016/s0378-4274(98)00151-9. [DOI] [PubMed] [Google Scholar]
  2. Afaq F., Abidi P., Matin R., Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol. 1998 Sep-Oct;18(5):307–312. doi: 10.1002/(sici)1099-1263(1998090)18:5<307::aid-jat508>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  3. Baggs R. B., Ferin J., Oberdörster G. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol. 1997 Nov;34(6):592–597. doi: 10.1177/030098589703400607. [DOI] [PubMed] [Google Scholar]
  4. Broaddus V. C., Yang L., Scavo L. M., Ernst J. D., Boylan A. M. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest. 1996 Nov 1;98(9):2050–2059. doi: 10.1172/JCI119010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broaddus V. C., Yang L., Scavo L. M., Ernst J. D., Boylan A. M. Crocidolite asbestos induces apoptosis of pleural mesothelial cells: role of reactive oxygen species and poly(ADP-ribosyl) polymerase. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1147–1152. doi: 10.1289/ehp.97105s51147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandra J., Samali A., Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000 Aug;29(3-4):323–333. doi: 10.1016/s0891-5849(00)00302-6. [DOI] [PubMed] [Google Scholar]
  7. Churg A., Stevens B., Wright J. L. Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system. Am J Physiol. 1998 Jan;274(1 Pt 1):L81–L86. doi: 10.1152/ajplung.1998.274.1.L81. [DOI] [PubMed] [Google Scholar]
  8. Clutton S. The importance of oxidative stress in apoptosis. Br Med Bull. 1997;53(3):662–668. doi: 10.1093/oxfordjournals.bmb.a011637. [DOI] [PubMed] [Google Scholar]
  9. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13(8):795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
  10. Dopp E., Nebe B., Hahnel C., Papp T., Alonso B., Simkó M., Schiffmann D. Mineral fibers induce apoptosis in Syrian hamster embryo fibroblasts. Pathobiology. 1995;63(4):213–221. doi: 10.1159/000163954. [DOI] [PubMed] [Google Scholar]
  11. Driscoll K. E., Maurer J. K. Cytokine and growth factor release by alveolar macrophages: potential biomarkers of pulmonary toxicity. Toxicol Pathol. 1991;19(4 Pt 1):398–405. doi: 10.1177/0192623391019004-108. [DOI] [PubMed] [Google Scholar]
  12. Driscoll K. E., Maurer J. K., Lindenschmidt R. C., Romberger D., Rennard S. I., Crosby L. Respiratory tract responses to dust: relationships between dust burden, lung injury, alveolar macrophage fibronectin release, and the development of pulmonary fibrosis. Toxicol Appl Pharmacol. 1990 Oct;106(1):88–101. doi: 10.1016/0041-008x(90)90109-8. [DOI] [PubMed] [Google Scholar]
  13. Drumm K., Buhl R., Kienast K. Additional NO2 exposure induces a decrease in cytokine specific mRNA expression and cytokine release of particle and fibre exposed human alveolar macrophages. Eur J Med Res. 1999 Feb 25;4(2):59–66. [PubMed] [Google Scholar]
  14. Duke R. C., Witter R. Z., Nash P. B., Young J. D., Ojcius D. M. Cytolysis mediated by ionophores and pore-forming agents: role of intracellular calcium in apoptosis. FASEB J. 1994 Feb;8(2):237–246. doi: 10.1096/fasebj.8.2.8119494. [DOI] [PubMed] [Google Scholar]
  15. Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells. 1990 Aug-Sep;2(8-9):275–280. [PubMed] [Google Scholar]
  16. Fritzenschaf H., Kohlpoth M., Rusche B., Schiffmann D. Testing of known carcinogens and noncarcinogens in the Syrian hamster embryo (SHE) micronucleus test in vitro; correlations with in vivo micronucleus formation and cell transformation. Mutat Res. 1993 Sep;319(1):47–53. doi: 10.1016/0165-1218(93)90029-d. [DOI] [PubMed] [Google Scholar]
  17. Hampton M. B., Orrenius S. Redox regulation of apoptotic cell death. Biofactors. 1998;8(1-2):1–5. doi: 10.1002/biof.5520080101. [DOI] [PubMed] [Google Scholar]
  18. Heddle J. A., Hite M., Kirkhart B., Mavournin K., MacGregor J. T., Newell G. W., Salamone M. F. The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983 Sep;123(1):61–118. doi: 10.1016/0165-1110(83)90047-7. [DOI] [PubMed] [Google Scholar]
  19. Hedenborg M. Titanium dioxide induced chemiluminescence of human polymorphonuclear leukocytes. Int Arch Occup Environ Health. 1988;61(1-2):1–6. doi: 10.1007/BF00381600. [DOI] [PubMed] [Google Scholar]
  20. Hesterberg T. W., Butterick C. J., Oshimura M., Brody A. R., Barrett J. C. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res. 1986 Nov;46(11):5795–5802. [PubMed] [Google Scholar]
  21. Jacobson M. D. Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996 Mar;21(3):83–86. [PubMed] [Google Scholar]
  22. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lindenschmidt R. C., Driscoll K. E., Perkins M. A., Higgins J. M., Maurer J. K., Belfiore K. A. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol. 1990 Feb;102(2):268–281. doi: 10.1016/0041-008x(90)90026-q. [DOI] [PubMed] [Google Scholar]
  24. Lu P. J., Ho I. C., Lee T. C. Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells. Mutat Res. 1998 May 11;414(1-3):15–20. doi: 10.1016/s1383-5718(98)00034-5. [DOI] [PubMed] [Google Scholar]
  25. Nakagawa Y., Wakuri S., Sakamoto K., Tanaka N. The photogenotoxicity of titanium dioxide particles. Mutat Res. 1997 Nov 27;394(1-3):125–132. doi: 10.1016/s1383-5718(97)00126-5. [DOI] [PubMed] [Google Scholar]
  26. Oberdörster G., Ferin J., Gelein R., Soderholm S. C., Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect. 1992 Jul;97:193–199. doi: 10.1289/ehp.97-1519541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Oberdörster G., Ferin J., Lehnert B. E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994 Oct;102 (Suppl 5):173–179. doi: 10.1289/ehp.102-1567252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001 Jan;74(1):1–8. doi: 10.1007/s004200000185. [DOI] [PubMed] [Google Scholar]
  29. Orrenius S., McCabe M. J., Jr, Nicotera P. Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett. 1992 Dec;64-65 Spec No:357–364. doi: 10.1016/0378-4274(92)90208-2. [DOI] [PubMed] [Google Scholar]
  30. Petruska J. M., Leslie K. O., Mossman B. T. Enhanced lipid peroxidation in lung lavage of rats after inhalation of asbestos. Free Radic Biol Med. 1991;11(4):425–432. doi: 10.1016/0891-5849(91)90160-5. [DOI] [PubMed] [Google Scholar]
  31. Rahman Q., Norwood J., Hatch G. Evidence that exposure of particulate air pollutants to human and rat alveolar macrophages leads to differential oxidative response. Biochem Biophys Res Commun. 1997 Nov 26;240(3):669–672. doi: 10.1006/bbrc.1997.7373. [DOI] [PubMed] [Google Scholar]
  32. Sah N. K., Taneja T. K., Pathak N., Begum R., Athar M., Hasnain S. E. The baculovirus antiapoptotic p35 gene also functions via an oxidant-dependent pathway. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4838–4843. doi: 10.1073/pnas.96.9.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Slater T. F. Free radicals and tissue injury: fact and fiction. Br J Cancer Suppl. 1987 Jun;8:5–10. [PMC free article] [PubMed] [Google Scholar]
  34. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]
  35. Yamadori I., Ohsumi S., Taguchi K. Titanium dioxide deposition and adenocarcinoma of the lung. Acta Pathol Jpn. 1986 May;36(5):783–790. doi: 10.1111/j.1440-1827.1986.tb01066.x. [DOI] [PubMed] [Google Scholar]
  36. Zhang Q., Kusaka Y., Sato K., Nakakuki K., Kohyama N., Donaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health A. 1998 Mar 27;53(6):423–438. doi: 10.1080/009841098159169. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES