Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Sep;110(9):853–858. doi: 10.1289/ehp.02110853

Linking dioxins to diabetes: epidemiology and biologic plausibility.

Rene B J Remillard 1, Nigel J Bunce 1
PMCID: PMC1240982  PMID: 12204817

Abstract

Recent epidemiologic studies suggest a possible association between dioxin-like compounds (DLCs) and diabetes in human populations, although experimental links between DLCs and diabetes are lacking. The public health significance of such an association is that all populations are exposed to small but measurable levels of DLCs, chronic low-dose exposure to which may hasten the onset of adult-onset diabetes in susceptible individuals. In this article, we review the epidemiologic studies and propose biologically plausible connections between dioxins and diabetes. Specifically, we suggest that aryl hydrocarbon (Ah) receptor functions may antagonize peroxisome proliferator-activated receptor (PPAR) functions, and hence that the Ah receptor may promote diabetogenesis through a mechanism of PPAR antagonism.

Full Text

The Full Text of this article is available as a PDF (529.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D. L., Ganem L. G., Fernandez-Salguero P., Gonzalez F., Jefcoate C. R. Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. J Cell Sci. 1998 Nov;111(Pt 22):3311–3322. doi: 10.1242/jcs.111.22.3311. [DOI] [PubMed] [Google Scholar]
  2. Bertazzi P. A., Bernucci I., Brambilla G., Consonni D., Pesatori A. C. The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect. 1998 Apr;106 (Suppl 2):625–633. doi: 10.1289/ehp.98106625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Best J. D., O'Neal D. N. Diabetic dyslipidaemia: current treatment recommendations. Drugs. 2000 May;59(5):1101–1111. doi: 10.2165/00003495-200059050-00006. [DOI] [PubMed] [Google Scholar]
  4. Brewster D. W., Bombick D. W., Matsumura F. Rabbit serum hypertriglyceridemia after administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Toxicol Environ Health. 1988;25(4):495–507. doi: 10.1080/15287398809531227. [DOI] [PubMed] [Google Scholar]
  5. Calleja C., Eeckhoutte C., Larrieu G., Dupuy J., Pineau T., Galtier P. Differential effects of interleukin-1 beta, interleukin-2, and interferon-gamma on the inducible expression of CYP 1A1 and CYP 1A2 in cultured rabbit hepatocytes. Biochem Biophys Res Commun. 1997 Oct 9;239(1):273–278. doi: 10.1006/bbrc.1997.7468. [DOI] [PubMed] [Google Scholar]
  6. Calvert G. M., Sweeney M. H., Deddens J., Wall D. K. Evaluation of diabetes mellitus, serum glucose, and thyroid function among United States workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med. 1999 Apr;56(4):270–276. doi: 10.1136/oem.56.4.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cassuto H., Aran A., Cohen H., Eisenberger C. L., Reshef L. Repression and activation of transcription of phosphoenolpyruvate carboxykinase gene during liver development. FEBS Lett. 1999 Sep 3;457(3):441–444. doi: 10.1016/s0014-5793(99)01080-7. [DOI] [PubMed] [Google Scholar]
  8. Charles G. D., Shiverick K. T. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases mRNA levels for interleukin-1beta, urokinase plasminogen activator, and tumor necrosis factor-alpha in human uterine endometrial adenocarcinoma RL95-2 cells. Biochem Biophys Res Commun. 1997 Sep 18;238(2):338–342. doi: 10.1006/bbrc.1997.7291. [DOI] [PubMed] [Google Scholar]
  9. Clay C. E., Namen A. M., Fonteh A. N., Atsumi G., High K. P., Chilton F. H. 15-deoxy-Delta(12,14)PGJ(2) induces diverse biological responses via PPARgamma activation in cancer cells. Prostaglandins Other Lipid Mediat. 2000 Jun;62(1):23–32. doi: 10.1016/s0090-6980(00)00073-3. [DOI] [PubMed] [Google Scholar]
  10. Cooney C. M. How serious is dioxin's cancer risk? Environ Sci Technol. 2001 May 1;35(9):180A–181A. doi: 10.1021/es012332p. [DOI] [PubMed] [Google Scholar]
  11. Cranmer M., Louie S., Kennedy R. H., Kern P. A., Fonseca V. A. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance. Toxicol Sci. 2000 Aug;56(2):431–436. doi: 10.1093/toxsci/56.2.431. [DOI] [PubMed] [Google Scholar]
  12. Devine J. H., Eubank D. W., Clouthier D. E., Tontonoz P., Spiegelman B. M., Hammer R. E., Beale E. G. Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo. J Biol Chem. 1999 May 7;274(19):13604–13612. doi: 10.1074/jbc.274.19.13604. [DOI] [PubMed] [Google Scholar]
  13. Dragan Y. P., Schrenk D. Animal studies addressing the carcinogenicity of TCDD (or related compounds) with an emphasis on tumour promotion. Food Addit Contam. 2000 Apr;17(4):289–302. doi: 10.1080/026520300283360. [DOI] [PubMed] [Google Scholar]
  14. Enan E., Liu P. C., Matsumura F. TCDD (2,3,7,8-tetrachlorodibenzo-P-dioxin) causes reduction in glucose uptake through glucose transporters on the plasma membrane of the guinea pig adipocyte. J Environ Sci Health B. 1992 Oct;27(5):495–510. doi: 10.1080/03601239209372797. [DOI] [PubMed] [Google Scholar]
  15. Fan F., Yan B., Wood G., Viluksela M., Rozman K. K. Cytokines (IL-1beta and TNFalpha) in relation to biochemical and immunological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rats. Toxicology. 1997 Jan 15;116(1-3):9–16. doi: 10.1016/s0300-483x(96)03514-7. [DOI] [PubMed] [Google Scholar]
  16. Felber J. P., Golay A. Regulation of nutrient metabolism and energy expenditure. Metabolism. 1995 Feb;44(2 Suppl 2):4–9. doi: 10.1016/0026-0495(95)90201-5. [DOI] [PubMed] [Google Scholar]
  17. Fernández-Real J. M., Ricart W. Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia. 1999 Nov;42(11):1367–1374. doi: 10.1007/s001250051451. [DOI] [PubMed] [Google Scholar]
  18. Fischer B. Receptor-mediated effects of chlorinated hydrocarbons. Andrologia. 2000 Sep;32(4-5):279–283. doi: 10.1046/j.1439-0272.2000.00397.x. [DOI] [PubMed] [Google Scholar]
  19. Geyer H. J., Scheunert I., Rapp K., Gebefügi I., Steinberg C., Kettrup A. The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ecotoxicol Environ Saf. 1993 Aug;26(1):45–60. doi: 10.1006/eesa.1993.1040. [DOI] [PubMed] [Google Scholar]
  20. Granner D. K., O'Brien R. M. Molecular physiology and genetics of NIDDM. Importance of metabolic staging. Diabetes Care. 1992 Mar;15(3):369–395. doi: 10.2337/diacare.15.3.369. [DOI] [PubMed] [Google Scholar]
  21. Greene M. E., Pitts J., McCarville M. A., Wang X. S., Newport J. A., Edelstein C., Lee F., Ghosh S., Chu S. PPARgamma: observations in the hematopoietic system. Prostaglandins Other Lipid Mediat. 2000 Jun;62(1):45–73. doi: 10.1016/s0090-6980(00)00075-7. [DOI] [PubMed] [Google Scholar]
  22. Heery D. M., Hoare S., Hussain S., Parker M. G., Sheppard H. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J Biol Chem. 2000 Nov 14;276(9):6695–6702. doi: 10.1074/jbc.M009404200. [DOI] [PubMed] [Google Scholar]
  23. Henriksen G. L., Ketchum N. S., Michalek J. E., Swaby J. A. Serum dioxin and diabetes mellitus in veterans of Operation Ranch Hand. Epidemiology. 1997 May;8(3):252–258. doi: 10.1097/00001648-199705000-00005. [DOI] [PubMed] [Google Scholar]
  24. Higginbotham G. R., Huang A., Firestone D., Verrett J., Ress J., Campbell A. D. Chemical and toxicological evaluations of isolated and synthetic chloro derivatives of dibenzo-p-dioxin. Nature. 1968 Nov 16;220(5168):702–703. doi: 10.1038/220702a0. [DOI] [PubMed] [Google Scholar]
  25. Hu K., Bunce N. J. Metabolism of polychlorinated dibenzo-p-dioxins and related dioxin-like compounds. J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):183–210. doi: 10.1080/109374099281214. [DOI] [PubMed] [Google Scholar]
  26. Johansson L., Båvner A., Thomsen J. S., Färnegårdh M., Gustafsson J. A., Treuter E. The orphan nuclear receptor SHP utilizes conserved LXXLL-related motifs for interactions with ligand-activated estrogen receptors. Mol Cell Biol. 2000 Feb;20(4):1124–1133. doi: 10.1128/mcb.20.4.1124-1133.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kersten S., Wahli W. Peroxisome proliferator activated receptor agonists. EXS. 2000;89:141–151. doi: 10.1007/978-3-0348-8393-1_9. [DOI] [PubMed] [Google Scholar]
  28. Kimbrough R. D. Toxicity of chlorinated hydrocarbons and related compounds. A review including chlorinated dibenzodioxins and chlorinated dibenzofurans. Arch Environ Health. 1972 Aug;25(2):125–131. doi: 10.1080/00039896.1972.10666148. [DOI] [PubMed] [Google Scholar]
  29. Ko L., Cardona G. R., Chin W. W. Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6212–6217. doi: 10.1073/pnas.97.11.6212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Komers R., Vrána A. Thiazolidinediones--tools for the research of metabolic syndrome X. Physiol Res. 1998;47(4):215–225. [PubMed] [Google Scholar]
  31. Kumar M. B., Tarpey R. W., Perdew G. H. Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem. 1999 Aug 6;274(32):22155–22164. doi: 10.1074/jbc.274.32.22155. [DOI] [PubMed] [Google Scholar]
  32. Lai Z. W., Hundeiker C., Gleichmann E., Esser C. Cytokine gene expression during ontogeny in murine thymus on activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol. 1997 Jul;52(1):30–37. doi: 10.1124/mol.52.1.30. [DOI] [PubMed] [Google Scholar]
  33. Leung H. W., Murray F. J., Paustenbach D. J. A proposed occupational exposure limit for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am Ind Hyg Assoc J. 1988 Sep;49(9):466–474. doi: 10.1080/15298668891380088. [DOI] [PubMed] [Google Scholar]
  34. Liu P. C., Matsumura F. Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the "adipose- type" and "brain-type" glucose transporters in mice. Mol Pharmacol. 1995 Jan;47(1):65–73. [PubMed] [Google Scholar]
  35. Longnecker M. P., Michalek J. E. Serum dioxin level in relation to diabetes mellitus among Air Force veterans with background levels of exposure. Epidemiology. 2000 Jan;11(1):44–48. doi: 10.1097/00001648-200001000-00010. [DOI] [PubMed] [Google Scholar]
  36. Maloney E. K., Waxman D. J. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol. 1999 Dec 1;161(2):209–218. doi: 10.1006/taap.1999.8809. [DOI] [PubMed] [Google Scholar]
  37. Michalek J. E., Akhtar F. Z., Kiel J. L. Serum dioxin, insulin, fasting glucose, and sex hormone-binding globulin in veterans of Operation Ranch Hand. J Clin Endocrinol Metab. 1999 May;84(5):1540–1543. doi: 10.1210/jcem.84.5.5663. [DOI] [PubMed] [Google Scholar]
  38. Michalek J. E., Tripathi R. C., Caudill S. P., Pirkle J. L. Investigation of TCDD half-life heterogeneity in veterans of Operation Ranch Hand. J Toxicol Environ Health. 1992 Jan;35(1):29–38. doi: 10.1080/15287399209531591. [DOI] [PubMed] [Google Scholar]
  39. Moos A. B., Oughton J. A., Kerkvliet N. I. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on tumor necrosis factor (TNF) production by peritoneal cells. Toxicol Lett. 1997 Feb 7;90(2-3):145–153. doi: 10.1016/s0378-4274(96)03838-6. [DOI] [PubMed] [Google Scholar]
  40. Murphy G. J., Holder J. C. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci. 2000 Dec;21(12):469–474. doi: 10.1016/s0165-6147(00)01559-5. [DOI] [PubMed] [Google Scholar]
  41. Nguyen T. A., Hoivik D., Lee J. E., Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch Biochem Biophys. 1999 Jul 15;367(2):250–257. doi: 10.1006/abbi.1999.1282. [DOI] [PubMed] [Google Scholar]
  42. Nolte R. T., Wisely G. B., Westin S., Cobb J. E., Lambert M. H., Kurokawa R., Rosenfeld M. G., Willson T. M., Glass C. K., Milburn M. V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998 Sep 10;395(6698):137–143. doi: 10.1038/25931. [DOI] [PubMed] [Google Scholar]
  43. Puga A., Barnes S. J., Dalton T. P., Chang C. y., Knudsen E. S., Maier M. A. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem. 2000 Jan 28;275(4):2943–2950. doi: 10.1074/jbc.275.4.2943. [DOI] [PubMed] [Google Scholar]
  44. Ren Y., Behre E., Ren Z., Zhang J., Wang Q., Fondell J. D. Specific structural motifs determine TRAP220 interactions with nuclear hormone receptors. Mol Cell Biol. 2000 Aug;20(15):5433–5446. doi: 10.1128/mcb.20.15.5433-5446.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rier S. E., Coe C. L., Lemieux A. M., Martin D. C., Morris R., Lucier G. W., Clark G. C. Increased tumor necrosis factor-alpha production by peripheral blood leukocytes from TCDD-exposed rhesus monkeys. Toxicol Sci. 2001 Apr;60(2):327–337. doi: 10.1093/toxsci/60.2.327. [DOI] [PubMed] [Google Scholar]
  46. Rozman K. K. Search for the mechanism of toxicity of dioxins. A lesson in toxicology. Exp Toxicol Pathol. 1992 Dec;44(8):473–480. doi: 10.1016/S0940-2993(11)80160-0. [DOI] [PubMed] [Google Scholar]
  47. Schoonjans K., Auwerx J. Thiazolidinediones: an update. Lancet. 2000 Mar 18;355(9208):1008–1010. doi: 10.1016/S0140-6736(00)90002-3. [DOI] [PubMed] [Google Scholar]
  48. Schwetz B. A., Norris J. M., Sparschu G. L., Rowe U. K., Gehring P. J., Emerson J. L., Gerbig C. G. Toxicology of chlorinated dibenzo-p-dioxins. Environ Health Perspect. 1973 Sep;5:87–99. doi: 10.1289/ehp.730587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shimaya A., Kurosaki E., Shioduka K., Nakano R., Shibasaki M., Shikama H. YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes. Horm Metab Res. 1998 Sep;30(9):543–548. doi: 10.1055/s-2007-978929. [DOI] [PubMed] [Google Scholar]
  50. Simpson F., Whitehead J. P., James D. E. GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic. 2001 Jan;2(1):2–11. doi: 10.1034/j.1600-0854.2001.020102.x. [DOI] [PubMed] [Google Scholar]
  51. Singh Ahuja H., Liu S., Crombie D. L., Boehm M., Leibowitz M. D., Heyman R. A., Depre C., Nagy L., Tontonoz P., Davies P. J. Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol. 2001 Apr;59(4):765–773. doi: 10.1124/mol.59.4.765. [DOI] [PubMed] [Google Scholar]
  52. Suzuki A., Yasuno T., Kojo H., Hirosumi J., Mutoh S., Notsu Y. Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones. Jpn J Pharmacol. 2000 Oct;84(2):113–123. doi: 10.1254/jjp.84.113. [DOI] [PubMed] [Google Scholar]
  53. Sweeney M. H., Calvert G. M., Egeland G. A., Fingerhut M. A., Halperin W. E., Piacitelli L. A. Review and update of the results of the NIOSH medical study of workers exposed to chemicals contaminated with 2,3,7,8-tetrachlorodibenzodioxin. Teratog Carcinog Mutagen. 1997;17(4-5):241–247. [PubMed] [Google Scholar]
  54. Taylor M. J., Lucier G. W., Mahler J. F., Thompson M., Lockhart A. C., Clark G. C. Inhibition of acute TCDD toxicity by treatment with anti-tumor necrosis factor antibody or dexamethasone. Toxicol Appl Pharmacol. 1992 Nov;117(1):126–132. doi: 10.1016/0041-008x(92)90227-j. [DOI] [PubMed] [Google Scholar]
  55. Tian Y., Ke S., Denison M. S., Rabson A. B., Gallo M. A. Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem. 1999 Jan 1;274(1):510–515. doi: 10.1074/jbc.274.1.510. [DOI] [PubMed] [Google Scholar]
  56. Tontonoz P., Hu E., Devine J., Beale E. G., Spiegelman B. M. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1995 Jan;15(1):351–357. doi: 10.1128/mcb.15.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tritscher A. M., Clark G. C., Sewall C., Sills R. C., Maronpot R., Lucier G. W. Persistence of TCDD-induced hepatic cell proliferation and growth of enzyme altered foci after chronic exposure followed by cessation of treatment in DEN initiated female rats. Carcinogenesis. 1995 Nov;16(11):2807–2811. doi: 10.1093/carcin/16.11.2807. [DOI] [PubMed] [Google Scholar]
  58. Vainio H., Linnainmaa K., Kähönen M., Nickels J., Hietanen E., Marniemi J., Peltonen P. Hypolipidemia and peroxisome proliferation induced by phenoxyacetic acid herbicides in rats. Biochem Pharmacol. 1983 Sep 15;32(18):2775–2779. doi: 10.1016/0006-2952(83)90091-6. [DOI] [PubMed] [Google Scholar]
  59. Van den Berg M., Birnbaum L., Bosveld A. T., Brunström B., Cook P., Feeley M., Giesy J. P., Hanberg A., Hasegawa R., Kennedy S. W. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998 Dec;106(12):775–792. doi: 10.1289/ehp.98106775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Viluksela M., Stahl B. U., Birnbaum L. S., Rozman K. K. Subchronic/chronic toxicity of a mixture of four chlorinated dibenzo-p-dioxins in rats. II. Biochemical effects. Toxicol Appl Pharmacol. 1998 Jul;151(1):70–78. doi: 10.1006/taap.1998.8412. [DOI] [PubMed] [Google Scholar]
  61. Viluksela M., Unkila M., Pohjanvirta R., Tuomisto J. T., Stahl B. U., Rozman K. K., Tuomisto J. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. Arch Toxicol. 1999 Aug;73(6):323–336. doi: 10.1007/s002040050626. [DOI] [PubMed] [Google Scholar]
  62. Webb P., Anderson C. M., Valentine C., Nguyen P., Marimuthu A., West B. L., Baxter J. D., Kushner P. J. The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). Mol Endocrinol. 2000 Dec;14(12):1976–1985. doi: 10.1210/mend.14.12.0566. [DOI] [PubMed] [Google Scholar]
  63. Wielandt A. M., Vollrath V., Manzano M., Miranda S., Accatino L., Chianale J. Induction of the multispecific organic anion transporter (cMoat/mrp2) gene and biliary glutathione secretion by the herbicide 2,4,5-trichlorophenoxyacetic acid in the mouse liver. Biochem J. 1999 Jul 1;341(Pt 1):105–111. [PMC free article] [PubMed] [Google Scholar]
  64. Wilson C. L., Safe S. Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicol Pathol. 1998 Sep-Oct;26(5):657–671. doi: 10.1177/019262339802600510. [DOI] [PubMed] [Google Scholar]
  65. Yang J. H., Vogel C., Abel J. A malignant transformation of human cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin exhibits altered expressions of growth regulatory factors. Carcinogenesis. 1999 Jan;20(1):13–18. doi: 10.1093/carcin/20.1.13. [DOI] [PubMed] [Google Scholar]
  66. Yonemoto J. The effects of dioxin on reproduction and development. Ind Health. 2000 Jul;38(3):259–268. doi: 10.2486/indhealth.38.259. [DOI] [PubMed] [Google Scholar]
  67. Zhang H., Thomsen J. S., Johansson L., Gustafsson J. A., Treuter E. DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J Biol Chem. 2000 Dec 22;275(51):39855–39859. doi: 10.1074/jbc.C000567200. [DOI] [PubMed] [Google Scholar]
  68. Zhu Y., Kan L., Qi C., Kanwar Y. S., Yeldandi A. V., Rao M. S., Reddy J. K. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J Biol Chem. 2000 May 5;275(18):13510–13516. doi: 10.1074/jbc.275.18.13510. [DOI] [PubMed] [Google Scholar]
  69. Zober A., Ott M. G., Messerer P. Morbidity follow up study of BASF employees exposed to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) after a 1953 chemical reactor incident. Occup Environ Med. 1994 Jul;51(7):479–486. doi: 10.1136/oem.51.7.479. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES