Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Sep;110(9):871–874. doi: 10.1289/ehp.02110871

Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat.

Rebecca Z Sokol 1, Saixi Wang 1, Yu-Jui Y Wan 1, Frank Z Stanczyk 1, Elisabet Gentzschein 1, Robert E Chapin 1
PMCID: PMC1240985  PMID: 12204820

Abstract

Lead is a male reproductive toxicant. Data suggest that rats dosed with relatively high levels of lead acetate for short periods of time induced changes in the hypothalamic gonadotropin-releasing hormone (GnRH) at the molecular level, but these changes were attenuated with increased concentration of exposure. The current study evaluated whether exposure to low levels of lead acetate over longer periods of time would produce a similar pattern of adaptation to toxicity at the molecular and biologic levels. Adult 100-day-old Sprague-Dawley male rats were dosed with 0, 0.025, 0.05, 0.1, and 0.3% lead acetate in water. Animals were killed after 1, 4, 8, and 16 weeks of treatment. Luteinzing hormone (LH) and GnRH levels were measured in serum, and lead levels were quantified in whole blood. Hypothalamic GnRH mRNA levels were also quantified. We found no significant differences in serum LH and GnRH among the groups of animals treated within each time period. A significant dose-related increase of GnRH mRNA concentrations with lead dosing occurred in animals treated for 1 week. Animals treated for more than 1 week also exhibited a significant increase in GnRH mRNA, but with an attenuation of the increase at the higher concentrations of lead with increased duration of exposure. We conclude that the signals within and between the hypothalamus and pituitary gland appear to be disrupted by long-term, low-dose lead exposure.

Full Text

The Full Text of this article is available as a PDF (543.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostoli P., Kiss P., Porru S., Bonde J. P., Vanhoorne M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup Environ Med. 1998 Jun;55(6):364–374. doi: 10.1136/oem.55.6.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benoff S., Jacob A., Hurley I. R. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update. 2000 Mar-Apr;6(2):107–121. doi: 10.1093/humupd/6.2.107. [DOI] [PubMed] [Google Scholar]
  3. Bratton G. R., Hiney J. K., Dees W. L. Lead (Pb) alters the norepinephrine-induced secretion of luteinizing hormone releasing hormone from the median eminence of adult male rats in vitro. Life Sci. 1994;55(8):563–571. doi: 10.1016/0024-3205(94)00482-x. [DOI] [PubMed] [Google Scholar]
  4. Del Rosario A. R., Guirguis G. N., Perez G. P., Matias V. C., Li T. H., Flessel C. P. A rapid and precise system for lead determination in whole blood. Int J Environ Anal Chem. 1982 Nov;12(3-4):223–231. doi: 10.1080/03067318208078329. [DOI] [PubMed] [Google Scholar]
  5. Finkelstein Y., Markowitz M. E., Rosen J. F. Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Brain Res Rev. 1998 Jul;27(2):168–176. doi: 10.1016/s0165-0173(98)00011-3. [DOI] [PubMed] [Google Scholar]
  6. Foster W. G., McMahon A., YoungLai E. V., Hughes E. G., Rice D. C. Reproductive endocrine effects of chronic lead exposure in the male cynomolgus monkey. Reprod Toxicol. 1993 May-Jun;7(3):203–209. doi: 10.1016/0890-6238(93)90225-v. [DOI] [PubMed] [Google Scholar]
  7. Foster W. G. Reproductive toxicity of chronic lead exposure in the female cynomolgus monkey. Reprod Toxicol. 1992;6(2):123–131. doi: 10.1016/0890-6238(92)90113-8. [DOI] [PubMed] [Google Scholar]
  8. Franks P. A., Laughlin N. K., Dierschke D. J., Bowman R. E., Meller P. A. Effects of lead on luteal function in rhesus monkeys. Biol Reprod. 1989 Dec;41(6):1055–1062. doi: 10.1095/biolreprod41.6.1055. [DOI] [PubMed] [Google Scholar]
  9. Haavisto A. M., Pettersson K., Bergendahl M., Perheentupa A., Roser J. F., Huhtaniemi I. A supersensitive immunofluorometric assay for rat luteinizing hormone. Endocrinology. 1993 Apr;132(4):1687–1691. doi: 10.1210/endo.132.4.8462469. [DOI] [PubMed] [Google Scholar]
  10. Hammond P. B., Lerner S. I., Gartside P. S., Hanenson I. B., Roda S. B., Foulkes E. C., Johnson D. R., Pesce A. J. The relationship of biological indices of lead exposure to the health status of workers in a secondary lead smelter. J Occup Med. 1980 Jul;22(7):475–484. [PubMed] [Google Scholar]
  11. Hitzfeld B., Taylor D. M. Characteristics of lead adaptation in a rat kidney cell line. II. Effect on DNA synthesis, protein synthesis, and gene expression. Mol Toxicol. 1989 Jul-Sep;2(3):163–175. [PubMed] [Google Scholar]
  12. Kempinas W. G., Favaretto A. L., Melo V. R., Carvalho T. L., Petenusci S. O., Oliveira-Filho R. M. Time-dependent effects of lead on rat reproductive functions. J Appl Toxicol. 1994 Nov-Dec;14(6):427–433. doi: 10.1002/jat.2550140608. [DOI] [PubMed] [Google Scholar]
  13. Kimmel C. A., Grant L. D., Sloan C. S., Gladen B. C. Chronic low-level lead toxicity in the rat. I. Maternal toxicity and perinatal effects. Toxicol Appl Pharmacol. 1980 Oct;56(1):28–41. doi: 10.1016/0041-008x(80)90129-5. [DOI] [PubMed] [Google Scholar]
  14. Klein D., Wan Y. J., Kamyab S., Okuda H., Sokol R. Z. Effects of toxic levels of lead on gene regulation in the male axis: increase in messenger ribonucleic acids and intracellular stores of gonadotrophs within the central nervous system. Biol Reprod. 1994 Apr;50(4):802–811. doi: 10.1095/biolreprod50.4.802. [DOI] [PubMed] [Google Scholar]
  15. Lancranjan I., Popescu H. I., GAvănescu O., Klepsch I., Serbănescu M. Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health. 1975 Aug;30(8):396–401. doi: 10.1080/00039896.1975.10666733. [DOI] [PubMed] [Google Scholar]
  16. Marshall J. C., Kelch R. P. Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med. 1986 Dec 4;315(23):1459–1468. doi: 10.1056/NEJM198612043152306. [DOI] [PubMed] [Google Scholar]
  17. McGivern R. F., Sokol R. Z., Berman N. G. Prenatal lead exposure in the rat during the third week of gestation: long-term behavioral, physiological, and anatomical effects associated with reproduction. Toxicol Appl Pharmacol. 1991 Sep 1;110(2):206–215. doi: 10.1016/s0041-008x(05)80003-1. [DOI] [PubMed] [Google Scholar]
  18. Moorman W. J., Skaggs S. R., Clark J. C., Turner T. W., Sharpnack D. D., Murrell J. A., Simon S. D., Chapin R. E., Schrader S. M. Male reproductive effects of lead, including species extrapolation for the rabbit model. Reprod Toxicol. 1998 May-Jun;12(3):333–346. doi: 10.1016/s0890-6238(98)00010-0. [DOI] [PubMed] [Google Scholar]
  19. Nathan E., Huang H. F., Pogach L., Giglio W., Bogden J. D., Seebode J. Lead acetate does not impair secretion of Sertoli cell function marker proteins in the adult Sprague Dawley rat. Arch Environ Health. 1992 Sep-Oct;47(5):370–375. doi: 10.1080/00039896.1992.9938377. [DOI] [PubMed] [Google Scholar]
  20. Pirkle J. L., Kaufmann R. B., Brody D. J., Hickman T., Gunter E. W., Paschal D. C. Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect. 1998 Nov;106(11):745–750. doi: 10.1289/ehp.98106745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pounds J. G., Cory-Slechta D. A. New dimensions of lead neurotoxicity: redefining mechanisms and effects. Neurotoxicology. 1993 Summer-Fall;14(2-3):4–6. [PubMed] [Google Scholar]
  22. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Shaikh F. Effects on pubertal growth and reproduction in rats exposed to lead perinatally or continuously throughout development. J Toxicol Environ Health A. 1998 Feb 20;53(4):327–341. doi: 10.1080/009841098159312. [DOI] [PubMed] [Google Scholar]
  23. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Shaikh F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol. 1996 Feb;136(2):361–371. doi: 10.1006/taap.1996.0044. [DOI] [PubMed] [Google Scholar]
  24. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Templer L., Ringer D., Thomas P. E. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat. J Toxicol Environ Health A. 1998 May 22;54(2):101–120. doi: 10.1080/009841098158944. [DOI] [PubMed] [Google Scholar]
  25. Ronis M. J., Gandy J., Badger T. Endocrine mechanisms underlying reproductive toxicity in the developing rat chronically exposed to dietary lead. J Toxicol Environ Health A. 1998 May 22;54(2):77–99. doi: 10.1080/009841098158935. [DOI] [PubMed] [Google Scholar]
  26. Silbergeld E. K. Mechanisms of lead neurotoxicity, or looking beyond the lamppost. FASEB J. 1992 Oct;6(13):3201–3206. doi: 10.1096/fasebj.6.13.1397842. [DOI] [PubMed] [Google Scholar]
  27. Sokol R. Z., Berman N., Okuda H., Raum W. Effects of lead exposure on GnRH and LH secretion in male rats: response to castration and alpha-methyl-p-tyrosine (AMPT) challenge. Reprod Toxicol. 1998 May-Jun;12(3):347–355. doi: 10.1016/s0890-6238(98)00014-8. [DOI] [PubMed] [Google Scholar]
  28. Sokol R. Z. Hormonal effects of lead acetate in the male rat: mechanism of action. Biol Reprod. 1987 Dec;37(5):1135–1138. doi: 10.1095/biolreprod37.5.1135. [DOI] [PubMed] [Google Scholar]
  29. Sokol R. Z., Madding C. E., Swerdloff R. S. Lead toxicity and the hypothalamic-pituitary-testicular axis. Biol Reprod. 1985 Oct;33(3):722–728. doi: 10.1095/biolreprod33.3.722. [DOI] [PubMed] [Google Scholar]
  30. Sokol R. Z. The effect of duration of exposure on the expression of lead toxicity on the male reproductive axis. J Androl. 1990 Nov-Dec;11(6):521–526. [PubMed] [Google Scholar]
  31. Staessen J. A., Nawrot T., Hond E. D., Thijs L., Fagard R., Hoppenbrouwers K., Koppen G., Nelen V., Schoeters G., Vanderschueren D. Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. Lancet. 2001 May 26;357(9269):1660–1669. doi: 10.1016/s0140-6736(00)04822-4. [DOI] [PubMed] [Google Scholar]
  32. Telisman S., Cvitković P., Jurasović J., Pizent A., Gavella M., Rocić B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000 Jan;108(1):45–53. doi: 10.1289/ehp.0010845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Todd A. C., Wetmur J. G., Moline J. M., Godbold J. H., Levin S. M., Landrigan P. J. Unraveling the chronic toxicity of lead: an essential priority for environmental health. Environ Health Perspect. 1996 Mar;104 (Suppl 1):141–146. doi: 10.1289/ehp.96104s1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winder C. Reproductive and chromosomal effects of occupational exposure to lead in the male. Reprod Toxicol. 1989;3(4):221–233. doi: 10.1016/0890-6238(89)90016-6. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES