Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Sep;110(9):875–880. doi: 10.1289/ehp.02110875

The association of particulate air metal concentrations with heart rate variability.

Shannon R Magari 1, Joel Schwartz 1, Paige L Williams 1, Russ Hauser 1, Thomas J Smith 1, David C Christiani 1
PMCID: PMC1240986  PMID: 12204821

Abstract

Numerous studies show an association between particulate air pollution and adverse health effects. Particulate matter is a complex mixture of elemental carbon, ammonium, sulfates, nitrates, organic components, and metals. The mechanisms of action of particulate matter less than or equal to 2.5 micro m in mean aerodynamic diameter (PM(2.5)), as well as the constituents responsible for the observed cardiopulmonary health effects, have not been identified. In this study we focused on the association between the metallic component of PM(2.5) and cardiac autonomic function based on standard heart rate variability (HRV) measures in an epidemiologic study of boilermakers. Thirty-nine male boilermakers were monitored throughout a work shift. Each subject wore an ambulatory electrocardiogram (Holter) monitor and a personal monitor to measure PM(2.5). We used mixed-effects models to regress heart rate and SDNN index (standard deviation of the normal-to-normal) on PM(2.5) and six metals (vanadium, nickel, chromium, lead, copper, and manganese). There were statistically significant mean increases in the SDNN index of 11.30 msec and 3.98 msec for every 1 micro g/m(3) increase in the lead and vanadium concentrations, respectively, after adjusting for mean heart rate, age, and smoking status. Small changes in mean heart rate were seen with all exposure metrics. The results of this study suggest an association between exposure to airborne metals and significant alterations in cardiac autonomic function. These results extend our understanding of the adverse health effects of the metals component of ambient PM(2.5).

Full Text

The Full Text of this article is available as a PDF (530.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrington W. W., Angle C. R., Willcockson N. K., Padula M. A., Korn T. Autonomic function in manganese alloy workers. Environ Res. 1998 Jul;78(1):50–58. doi: 10.1006/enrs.1997.3826. [DOI] [PubMed] [Google Scholar]
  2. Carter J. D., Ghio A. J., Samet J. M., Devlin R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997 Oct;146(2):180–188. doi: 10.1006/taap.1997.8254. [DOI] [PubMed] [Google Scholar]
  3. Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dekker J. M., Schouten E. G., Klootwijk P., Pool J., Swenne C. A., Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol. 1997 May 15;145(10):899–908. doi: 10.1093/oxfordjournals.aje.a009049. [DOI] [PubMed] [Google Scholar]
  5. Dreher K., Jaskot R., Kodavanti U., Lehmann J., Winsett D., Costa D. Soluble transition metals mediate the acute pulmonary injury and airway hyperreactivity induced by residual oil fly ash particles. Chest. 1996 Mar;109(3 Suppl):33S–34S. doi: 10.1378/chest.109.3_supplement.33s-a. [DOI] [PubMed] [Google Scholar]
  6. Gavett S. H., Madison S. L., Dreher K. L., Winsett D. W., McGee J. K., Costa D. L. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res. 1997 Feb;72(2):162–172. doi: 10.1006/enrs.1997.3732. [DOI] [PubMed] [Google Scholar]
  7. Gold D. R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., Allen G., Verrier M., Cherry R., Verrier R. Ambient pollution and heart rate variability. Circulation. 2000 Mar 21;101(11):1267–1273. doi: 10.1161/01.cir.101.11.1267. [DOI] [PubMed] [Google Scholar]
  8. Grabowski G. M., Paulauskis J. D., Godleski J. J. Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol. 1999 May 1;156(3):170–178. doi: 10.1006/taap.1999.8642. [DOI] [PubMed] [Google Scholar]
  9. Huffman G. P., Huggins F. E., Shah N., Huggins R., Linak W. P., Miller C. A., Pugmire R. J., Meuzelaar H. L., Seehra M. S., Manivannan A. Characterization of fine particulate matter produced by combustion of residual fuel oil. J Air Waste Manag Assoc. 2000 Jul;50(7):1106–1114. doi: 10.1080/10473289.2000.10464157. [DOI] [PubMed] [Google Scholar]
  10. Kasanuki H., Ohnishi S., Ohtuka M., Matsuda N., Nirei T., Isogai R., Shoda M., Toyoshima Y., Hosoda S. Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation. 1997 May 6;95(9):2277–2285. doi: 10.1161/01.cir.95.9.2277. [DOI] [PubMed] [Google Scholar]
  11. La Rovere M. T., Bigger J. T., Jr, Marcus F. I., Mortara A., Schwartz P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998 Feb 14;351(9101):478–484. doi: 10.1016/s0140-6736(97)11144-8. [DOI] [PubMed] [Google Scholar]
  12. Laden F., Neas L. M., Dockery D. W., Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000 Oct;108(10):941–947. doi: 10.1289/ehp.00108941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lanza G. A., Galeazzi M., Guido V., Lucente M., Bellocci F., Zecchi P., Maseri A. Additional predictive value of heart rate variability in high-risk patients surviving an acute myocardial infarction. Cardiologia. 1999 Mar;44(3):249–253. [PubMed] [Google Scholar]
  14. Liao D., Creason J., Shy C., Williams R., Watts R., Zweidinger R. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect. 1999 Jul;107(7):521–525. doi: 10.1289/ehp.99107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Magari S. R., Hauser R., Schwartz J., Williams P. L., Smith T. J., Christiani D. C. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation. 2001 Aug 28;104(9):986–991. doi: 10.1161/hc3401.095038. [DOI] [PubMed] [Google Scholar]
  16. Monn C., Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999 Mar 15;155(3):245–252. doi: 10.1006/taap.1998.8591. [DOI] [PubMed] [Google Scholar]
  17. Murata K., Araki S. Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability. Am J Ind Med. 1991;20(5):663–671. doi: 10.1002/ajim.4700200509. [DOI] [PubMed] [Google Scholar]
  18. Murata K., Araki S., Yokoyama K., Uchida E., Fujimura Y. Assessment of central, peripheral, and autonomic nervous system functions in lead workers: neuroelectrophysiological studies. Environ Res. 1993 May;61(2):323–336. doi: 10.1006/enrs.1993.1077. [DOI] [PubMed] [Google Scholar]
  19. Pope C. A., 3rd Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk? Environ Health Perspect. 2000 Aug;108 (Suppl 4):713–723. doi: 10.1289/ehp.108-1637679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pope C. A., 3rd, Verrier R. L., Lovett E. G., Larson A. C., Raizenne M. E., Kanner R. E., Schwartz J., Villegas G. M., Gold D. R., Dockery D. W. Heart rate variability associated with particulate air pollution. Am Heart J. 1999 Nov;138(5 Pt 1):890–899. doi: 10.1016/s0002-8703(99)70014-1. [DOI] [PubMed] [Google Scholar]
  21. Quay J. L., Reed W., Samet J., Devlin R. B. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am J Respir Cell Mol Biol. 1998 Jul;19(1):98–106. doi: 10.1165/ajrcmb.19.1.3132. [DOI] [PubMed] [Google Scholar]
  22. Samet J. M., Dominici F., Curriero F. C., Coursac I., Zeger S. L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000 Dec 14;343(24):1742–1749. doi: 10.1056/NEJM200012143432401. [DOI] [PubMed] [Google Scholar]
  23. Schwartz J. Air pollution and hospital admissions for cardiovascular disease in Tucson. Epidemiology. 1997 Jul;8(4):371–377. doi: 10.1097/00001648-199707000-00004. [DOI] [PubMed] [Google Scholar]
  24. Schwartz J., Dockery D. W. Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis. 1992 Mar;145(3):600–604. doi: 10.1164/ajrccm/145.3.600. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES