Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Sep;110(9):901–907. doi: 10.1289/ehp.02110901

Effects of hexamethylene diisocyanate exposure on human airway epithelial cells: in vitro cellular and molecular studies.

Adam V Wisnewski 1, Qing Liu 1, Jing-Jing Miller 1, Nadine Magoski 1, Carrie A Redlich 1
PMCID: PMC1240990  PMID: 12204825

Abstract

In this study we developed an in vitro exposure model to investigate the effects of hexamethylene diisocyanate (HDI) on human airway epithelial cells at the cellular and molecular level. We used immunofluorescence analysis (IFA) to visualize the binding and uptake of HDI by airway epithelial cell lines (A549 and NCI-NCI-H292) and microarray technology to identify HDI sensitive genes. By IFA, we observed that subcytotoxic concentrations of HDI form microscopic micelles that appear to be taken up by cells over a 3-hr period postexposure. Microarray analysis (4.6K genes) of parallel cultures identified four genes (thioredoxin reductase, dihydrodiol dehydrogenase, TG interacting factor, and stanniocalcin) whose mRNA levels were up-regulated after HDI exposure. Northern analysis was used to confirm that HDI increased message levels of these four genes and to further explore the dose dependence and kinetics of the response. The finding that HDI exposure increases thioredoxin reductase expression supports previous studies suggesting that HDI alters thiol-redox homeostasis, an important sensor of cellular stress. Another of the HDI-increased genes, a dihydrodiol dehydrogenase, encodes a protein previously shown to be specifically susceptible to HDI conjugation, and known to detoxify other hydrocarbons. Together, the data describe a novel approach for investigating the effects of HDI binding and uptake by human airway epithelial cells and begin to identify genes that may be involved in the acute response to exposure.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnér E. S., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x. [DOI] [PubMed] [Google Scholar]
  2. Bertolino E., Reimund B., Wildt-Perinic D., Clerc R. G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995 Dec 29;270(52):31178–31188. doi: 10.1074/jbc.270.52.31178. [DOI] [PubMed] [Google Scholar]
  3. Blum H., Röllinghoff M., Gessner A. Expression and co-cytokine function of murine thioredoxin/adult T cell leukaemia-derived factor (ADF). Cytokine. 1996 Jan;8(1):6–13. doi: 10.1006/cyto.1996.0002. [DOI] [PubMed] [Google Scholar]
  4. Chan-Yeung M., Malo J. L. Occupational asthma. N Engl J Med. 1995 Jul 13;333(2):107–112. doi: 10.1056/NEJM199507133330207. [DOI] [PubMed] [Google Scholar]
  5. Chang A. C., Janosi J., Hulsbeek M., de Jong D., Jeffrey K. J., Noble J. R., Reddel R. R. A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol. 1995 Aug 11;112(2):241–247. doi: 10.1016/0303-7207(95)03601-3. [DOI] [PubMed] [Google Scholar]
  6. Ciaccio P. J., Jaiswal A. K., Tew K. D. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics. J Biol Chem. 1994 Jun 3;269(22):15558–15562. [PubMed] [Google Scholar]
  7. Day B. W., Jin R., Basalyga D. M., Kramarik J. A., Karol M. H. Formation, solvolysis, and transcarbamoylation reactions of bis(S-glutathionyl) adducts of 2,4- and 2,6-diisocyanatotoluene. Chem Res Toxicol. 1997 Apr;10(4):424–431. doi: 10.1021/tx960201+. [DOI] [PubMed] [Google Scholar]
  8. England E., Key-Schwartz R., Lesage J., Carlton G., Streicher R., Song R. Comparison of sampling methods for monomer and polyisocyanates of 1,6-hexamethylene diisocyanate during spray finishing operations. Appl Occup Environ Hyg. 2000 Jun;15(6):472–478. doi: 10.1080/104732200301250. [DOI] [PubMed] [Google Scholar]
  9. Gasdaska J. R., Berggren M., Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995 Dec;6(12):1643–1650. [PubMed] [Google Scholar]
  10. Gasdaska P. Y., Oblong J. E., Cotgreave I. A., Powis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta. 1994 Aug 2;1218(3):292–296. doi: 10.1016/0167-4781(94)90180-5. [DOI] [PubMed] [Google Scholar]
  11. Glatt H. R., Platt K. L., Vogel K., Bücker M., Billings R., Oesch F. Metabolic inactivation of mutagenic benzo(a)pyrene metabolites: significance to carcinogenicity and implications for in vitro tests. Dev Toxicol Environ Sci. 1980;8:181–186. [PubMed] [Google Scholar]
  12. Iwata S., Hori T., Sato N., Hirota K., Sasada T., Mitsui A., Hirakawa T., Yodoi J. Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state. J Immunol. 1997 Apr 1;158(7):3108–3117. [PubMed] [Google Scholar]
  13. Karol M. H. Bonding and transfer: do epithelial conjugates have a role in chemical asthma? Clin Exp Allergy. 2001 Mar;31(3):357–360. doi: 10.1046/j.1365-2222.2001.01033.x. [DOI] [PubMed] [Google Scholar]
  14. Khayat M., Stuge T. B., Wilson M., Bengtén E., Miller N. W., Clem L. W. Thioredoxin acts as a B cell growth factor in channel catfish. J Immunol. 2001 Mar 1;166(5):2937–2943. doi: 10.4049/jimmunol.166.5.2937. [DOI] [PubMed] [Google Scholar]
  15. Koyanagi H., Wakasugi N., Yoshimatsu K., Takashima Y., Yodoi J., Momoi M., Suda T., Kasahara T., Yamaguchi Y. Role of ADF/TRX and its inhibitor on the release of major basic protein from human eosinophils. Biochem Biophys Res Commun. 1995 Aug 24;213(3):1140–1147. doi: 10.1006/bbrc.1995.2245. [DOI] [PubMed] [Google Scholar]
  16. Lange R. W., Day B. W., Lemus R., Tyurin V. A., Kagan V. E., Karol M. H. Intracellular S-glutathionyl adducts in murine lung and human bronchoepithelial cells after exposure to diisocyanatotoluene. Chem Res Toxicol. 1999 Oct;12(10):931–936. doi: 10.1021/tx990045h. [DOI] [PubMed] [Google Scholar]
  17. Lange R. W., Lantz R. C., Stolz D. B., Watkins S. C., Sundareshan P., Lemus R., Karol M. H. Toluene diisocyanate colocalizes with tubulin on cilia of differentiated human airway epithelial cells. Toxicol Sci. 1999 Jul;50(1):64–71. doi: 10.1093/toxsci/50.1.64. [DOI] [PubMed] [Google Scholar]
  18. Lantz R. C., Lemus R., Lange R. W., Karol M. H. Rapid reduction of intracellular glutathione in human bronchial epithelial cells exposed to occupational levels of toluene diisocyanate. Toxicol Sci. 2001 Apr;60(2):348–355. doi: 10.1093/toxsci/60.2.348. [DOI] [PubMed] [Google Scholar]
  19. Lo R. S., Wotton D., Massagué J. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J. 2001 Jan 15;20(1-2):128–136. doi: 10.1093/emboj/20.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Orloff K. G., Batts-Osborne D., Kilgus T., Metcalf S., Cooper M. Antibodies to toluene diisocyanate in an environmentally exposed population. Environ Health Perspect. 1998 Oct;106(10):665–666. doi: 10.1289/ehp.98106665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pauluhn J. Inhalation toxicity of 1,6-hexamethylene diisocyanate homopolymer (HDI-IC) aerosol: results of single inhalation exposure studies. Toxicol Sci. 2000 Nov;58(1):173–181. doi: 10.1093/toxsci/58.1.173. [DOI] [PubMed] [Google Scholar]
  22. Rahman I., MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J. 2000 Sep;16(3):534–554. doi: 10.1034/j.1399-3003.2000.016003534.x. [DOI] [PubMed] [Google Scholar]
  23. Rahman I., MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000 May 1;28(9):1405–1420. doi: 10.1016/s0891-5849(00)00215-x. [DOI] [PubMed] [Google Scholar]
  24. Stadtman T. C. Selenocysteine. Annu Rev Biochem. 1996;65:83–100. doi: 10.1146/annurev.bi.65.070196.000503. [DOI] [PubMed] [Google Scholar]
  25. Sullivan D. M., Wehr N. B., Fergusson M. M., Levine R. L., Finkel T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry. 2000 Sep 12;39(36):11121–11128. doi: 10.1021/bi0007674. [DOI] [PubMed] [Google Scholar]
  26. Sun Q. A., Wu Y., Zappacosta F., Jeang K. T., Lee B. J., Hatfield D. L., Gladyshev V. N. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem. 1999 Aug 27;274(35):24522–24530. doi: 10.1074/jbc.274.35.24522. [DOI] [PubMed] [Google Scholar]
  27. Vogel K., Bentley P., Platt K. L., Oesch F. Rat liver cytoplasmic dihydrodiol dehydrogenase. Purification to apparent homogeneity and properties. J Biol Chem. 1980 Oct 25;255(20):9621–9625. [PubMed] [Google Scholar]
  28. Wakasugi N., Tagaya Y., Wakasugi H., Mitsui A., Maeda M., Yodoi J., Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8282–8286. doi: 10.1073/pnas.87.21.8282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wisnewski A. V., Lemus R., Karol M. H., Redlich C. A. Isocyanate-conjugated human lung epithelial cell proteins: A link between exposure and asthma? J Allergy Clin Immunol. 1999 Aug;104(2 Pt 1):341–347. doi: 10.1016/s0091-6749(99)70377-5. [DOI] [PubMed] [Google Scholar]
  30. Wisnewski A. V., Redlich C. A. Recent developments in diisocyanate asthma. Curr Opin Allergy Clin Immunol. 2001 Apr;1(2):169–175. doi: 10.1097/01.all.0000011003.36723.d8. [DOI] [PubMed] [Google Scholar]
  31. Wisnewski A. V., Srivastava R., Herick C., Xu L., Lemus R., Cain H., Magoski N. M., Karol M. H., Bottomly K., Redlich C. A. Identification of human lung and skin proteins conjugated with hexamethylene diisocyanate in vitro and in vivo. Am J Respir Crit Care Med. 2000 Dec;162(6):2330–2336. doi: 10.1164/ajrccm.162.6.2002086. [DOI] [PubMed] [Google Scholar]
  32. Zhong L., Arnér E. S., Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5854–5859. doi: 10.1073/pnas.100114897. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES