Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(10):1003–1008. doi: 10.1289/ehp.021101003

Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species.

An Xu 1, Hongning Zhou 1, Dennis Zengliang Yu 1, Tom K Hei 1
PMCID: PMC1241026  PMID: 12361925

Abstract

Asbestos is an important environmental carcinogen in the United States and remains the primary occupational concern in many developing countries; however, the underlying mechanisms of its genotoxicity are not known. We showed previously that asbestos is a potent gene and chromosomal mutagen in mammalian cells and that it induces mostly multilocus deletions. Furthermore, reactive oxygen species (ROS) are associated with the mutagenic process. To evaluate the contribution of ROS to the mutagenicity of asbestos, we examined their generation, particularly hydrogen peroxide, and compared the types of mutants induced by crocidolite fibers with those generated by H(2)O(2 )in human-hamster hybrid (A(L)) cells. Using confocal scanning microscopy together with the radical probe 5,6 -chloromethy-2,7 -dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA), we found that asbestos induces a dose-dependent increase in the level of ROS among fiber-treated A(L) cells, which is suppressed by concurrent treatment with dimethyl sulfoxide. Using N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent) together with horseradish peroxidase, we further demonstrated that there was a dose-dependent induction of H(2)O(2) in crocidolite-treated A(L) cells. The amount of H(2)O(2 )induced by asbestos reached a plateau at a dose of 6 microg/cm(2). Concurrent treatment with catalase (1,000 U/mL) inhibited this induction by 7- to 8-fold. Mutation spectrum analysis showed that the types of CD59(-) mutants induced by crocidolite fibers were similar to those induced by equitoxic doses of H(2)O(2). These results provide direct evidence that the mutagenicity of asbestos is mediated by ROS in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Yoshida S., Kawamura K., Takahashi M., Uchida H., Odagiri Y., Takemoto K. Inductions of oxidative DNA damage and mesothelioma by crocidolite, with special reference to the presence of iron inside and outside of asbestos fiber. Carcinogenesis. 1994 Apr;15(4):753–758. doi: 10.1093/carcin/15.4.753. [DOI] [PubMed] [Google Scholar]
  2. Ambrosio G., Zweier J. L., Duilio C., Kuppusamy P., Santoro G., Elia P. P., Tritto I., Cirillo P., Condorelli M., Chiariello M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem. 1993 Sep 5;268(25):18532–18541. [PubMed] [Google Scholar]
  3. Anderson H. A., Lilis R., Daum S. M., Fischbein A. S., Selikoff I. J. Household-contact asbestos neoplastic risk. Ann N Y Acad Sci. 1976;271:311–323. doi: 10.1111/j.1749-6632.1976.tb23127.x. [DOI] [PubMed] [Google Scholar]
  4. Both K., Henderson D. W., Turner D. R. Asbestos and erionite fibres can induce mutations in human lymphocytes that result in loss of heterozygosity. Int J Cancer. 1994 Nov 15;59(4):538–542. doi: 10.1002/ijc.2910590417. [DOI] [PubMed] [Google Scholar]
  5. Dahm-Daphi J., Sass C., Alberti W. Comparison of biological effects of DNA damage induced by ionizing radiation and hydrogen peroxide in CHO cells. Int J Radiat Biol. 2000 Jan;76(1):67–75. doi: 10.1080/095530000139023. [DOI] [PubMed] [Google Scholar]
  6. Daniel F. B. In vitro assessment of asbestos genotoxicity. Environ Health Perspect. 1983 Nov;53:163–167. doi: 10.1289/ehp.8353163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeGraff W. G., Krishna M. C., Russo A., Mitchell J. B. Antimutagenicity of a low molecular weight superoxide dismutase mimic against oxidative mutagens. Environ Mol Mutagen. 1992;19(1):21–26. doi: 10.1002/em.2850190105. [DOI] [PubMed] [Google Scholar]
  8. Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
  9. Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
  10. Gabrielson E. W., Rosen G. M., Grafstrom R. C., Strauss K. E., Harris C. C. Studies on the role of oxygen radicals in asbestos-induced cytopathology of cultured human lung mesothelial cells. Carcinogenesis. 1986 Jul;7(7):1161–1164. doi: 10.1093/carcin/7.7.1161. [DOI] [PubMed] [Google Scholar]
  11. Goodglick L. A., Pietras L. A., Kane A. B. Evaluation of the causal relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages. Am Rev Respir Dis. 1989 May;139(5):1265–1273. doi: 10.1164/ajrccm/139.5.1265. [DOI] [PubMed] [Google Scholar]
  12. Gustafson D. L., Franz H. R., Ueno A. M., Smith C. J., Doolittle D. J., Waldren C. A. Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not (137)Cs gamma-radiation at the CD59 locus in human-hamster hybrid A(L) cells. Mutagenesis. 2000 May;15(3):207–213. doi: 10.1093/mutage/15.3.207. [DOI] [PubMed] [Google Scholar]
  13. Hancock J. T., Jones O. T. The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages. Biochem J. 1987 Feb 15;242(1):103–107. doi: 10.1042/bj2420103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
  15. Hei T. K., He Z. Y., Suzuki K. Effects of antioxidants on fiber mutagenesis. Carcinogenesis. 1995 Jul;16(7):1573–1578. doi: 10.1093/carcin/16.7.1573. [DOI] [PubMed] [Google Scholar]
  16. Hei T. K., Liu S. X., Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8103–8107. doi: 10.1073/pnas.95.14.8103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hei T. K., Piao C. Q., He Z. Y., Vannais D., Waldren C. A. Chrysotile fiber is a strong mutagen in mammalian cells. Cancer Res. 1992 Nov 15;52(22):6305–6309. [PubMed] [Google Scholar]
  18. Howden P. J., Faux S. P. Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts. Carcinogenesis. 1996 Mar;17(3):413–419. doi: 10.1093/carcin/17.3.413. [DOI] [PubMed] [Google Scholar]
  19. Huang S. L., Saggioro D., Michelmann H., Malling H. V. Genetic effects of crocidolite asbestos in Chinese hamster lung cells. Mutat Res. 1978 May;57(2):225–232. doi: 10.1016/0027-5107(78)90272-5. [DOI] [PubMed] [Google Scholar]
  20. Jaurand M. C. Mechanisms of fiber-induced genotoxicity. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1073–1084. doi: 10.1289/ehp.97105s51073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Juedes M. J., Wogan G. N. Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res. 1996 Jan 17;349(1):51–61. doi: 10.1016/0027-5107(95)00152-2. [DOI] [PubMed] [Google Scholar]
  22. Korkina L. G., Durnev A. D., Suslova T. B., Cheremisina Z. P., Daugel-Dauge N. O., Afanas'ev I. B. Oxygen radical-mediated mutagenic effect of asbestos on human lymphocytes: suppression by oxygen radical scavengers. Mutat Res. 1992 Feb;265(2):245–253. doi: 10.1016/0027-5107(92)90053-5. [DOI] [PubMed] [Google Scholar]
  23. LeBel C. P., Ischiropoulos H., Bondy S. C. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992 Mar-Apr;5(2):227–231. doi: 10.1021/tx00026a012. [DOI] [PubMed] [Google Scholar]
  24. Lezon-Geyda K., Jaime C. M., Godbold J. H., Savransky E. F., Hope A., Kheiri S. A., Dzmura Z. M., Uehara H., Johnson E. M., Fasy T. M. Chrysotile asbestos fibers mediate homologous recombination in Rat2 lambda fibroblasts: implications for carcinogenesis. Mutat Res. 1996 Dec 12;361(2-3):113–120. doi: 10.1016/s0165-1161(96)90245-9. [DOI] [PubMed] [Google Scholar]
  25. Liu S. X., Athar M., Lippai I., Waldren C., Hei T. K. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A. 2001 Feb 6;98(4):1643–1648. doi: 10.1073/pnas.031482998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Long J. F., Dutta P. K., Hogg B. D. Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers. Environ Health Perspect. 1997 Jul;105(7):706–711. doi: 10.1289/ehp.97105706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maples K. R., Johnson N. F. Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans. Carcinogenesis. 1992 Nov;13(11):2035–2039. doi: 10.1093/carcin/13.11.2035. [DOI] [PubMed] [Google Scholar]
  28. McGuinness S. M., Shibuya M. L., Ueno A. M., Vannais D. B., Waldren C. A. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine. Radiat Res. 1995 Jun;142(3):247–255. [PubMed] [Google Scholar]
  29. Merchant J. A. Human epidemiology: a review of fiber type and characteristics in the development of malignant and nonmalignant disease. Environ Health Perspect. 1990 Aug;88:287–293. doi: 10.1289/ehp.9088287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods. 1997 Mar 28;202(2):133–141. doi: 10.1016/s0022-1759(96)00244-x. [DOI] [PubMed] [Google Scholar]
  31. Mossman B. T. In vitro studies on the biologic effects of fibers: correlation with in vivo bioassays. Environ Health Perspect. 1990 Aug;88:319–322. doi: 10.1289/ehp.9088319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oliver L. C., Sprince N. L., Greene R. Asbestos-related disease in public school custodians. Am J Ind Med. 1991;19(3):303–316. doi: 10.1002/ajim.4700190305. [DOI] [PubMed] [Google Scholar]
  33. Oya Y., Yamamoto K., Tonomura A. The biological activity of hydrogen peroxide. I. Induction of chromosome-type aberrations susceptible to inhibition by scavengers of hydroxyl radicals in human embryonic fibroblasts. Mutat Res. 1986 Dec;172(3):245–253. doi: 10.1016/0165-1218(86)90062-5. [DOI] [PubMed] [Google Scholar]
  34. Park S. H., Aust A. E. Participation of iron and nitric oxide in the mutagenicity of asbestos in hgprt-, gpt+ Chinese hamster V79 cells. Cancer Res. 1998 Mar 15;58(6):1144–1148. [PubMed] [Google Scholar]
  35. Park S. H., Aust A. E. Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells. Arch Biochem Biophys. 1998 Dec 1;360(1):47–52. doi: 10.1006/abbi.1998.0950. [DOI] [PubMed] [Google Scholar]
  36. Root R. K., Metcalf J., Oshino N., Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. doi: 10.1172/JCI108024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol. 1990 May;47(5):440–448. [PubMed] [Google Scholar]
  38. Schapira R. M., Ghio A. J., Effros R. M., Morrisey J., Dawson C. A., Hacker A. D. Hydroxyl radicals are formed in the rat lung after asbestos instillation in vivo. Am J Respir Cell Mol Biol. 1994 May;10(5):573–579. doi: 10.1165/ajrcmb.10.5.8179922. [DOI] [PubMed] [Google Scholar]
  39. Sebastien P., Bignon J., Martin M. Indoor airborne asbestos pollution: from the ceiling and the floor. Science. 1982 Jun 25;216(4553):1410–1412. doi: 10.1126/science.6283630. [DOI] [PubMed] [Google Scholar]
  40. Shatos M. A., Doherty J. M., Marsh J. P., Mossman B. T. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environ Res. 1987 Oct;44(1):103–116. doi: 10.1016/s0013-9351(87)80090-7. [DOI] [PubMed] [Google Scholar]
  41. Stanton M. F., Laynard M., Tegeris A., Miller E., May M., Kent E. Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst. 1977 Mar;58(3):587–603. doi: 10.1093/jnci/58.3.587. [DOI] [PubMed] [Google Scholar]
  42. Termini J. Hydroperoxide-induced DNA damage and mutations. Mutat Res. 2000 May 30;450(1-2):107–124. doi: 10.1016/s0027-5107(00)00019-1. [DOI] [PubMed] [Google Scholar]
  43. Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0. [DOI] [PubMed] [Google Scholar]
  44. Turver C. J., Brown R. C. The role of catalytic iron in asbestos induced lipid peroxidation and DNA-strand breakage in C3H10T1/2 cells. Br J Cancer. 1987 Aug;56(2):133–136. doi: 10.1038/bjc.1987.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vilím V., Wilhelm J., Brzák P., Hurych J. Stimulation of alveolar macrophages by mineral dusts in vitro: luminol-dependent chemiluminescence study. Environ Res. 1987 Feb;42(1):246–256. doi: 10.1016/s0013-9351(87)80026-9. [DOI] [PubMed] [Google Scholar]
  46. Waldren C., Correll L., Sognier M. A., Puck T. T. Measurement of low levels of x-ray mutagenesis in relation to human disease. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4839–4843. doi: 10.1073/pnas.83.13.4839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Walker C., Everitt J., Barrett J. C. Possible cellular and molecular mechanisms for asbestos carcinogenicity. Am J Ind Med. 1992;21(2):253–273. doi: 10.1002/ajim.4700210214. [DOI] [PubMed] [Google Scholar]
  48. Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]
  49. Xu A., Wu L. J., Santella R. M., Hei T. K. Role of oxyradicals in mutagenicity and DNA damage induced by crocidolite asbestos in mammalian cells. Cancer Res. 1999 Dec 1;59(23):5922–5926. [PubMed] [Google Scholar]
  50. Zhou H., Zhu L. X., Li K., Hei T. K. Radon, tobacco-specific nitrosamine and mutagenesis in mammalian cells. Mutat Res. 1999 Nov 29;430(1):145–153. doi: 10.1016/s0027-5107(99)00188-8. [DOI] [PubMed] [Google Scholar]
  51. Zhu S., Manuel M., Tanaka S., Choe N., Kagan E., Matalon S. Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect. 1998 Oct;106 (Suppl 5):1157–1163. doi: 10.1289/ehp.98106s51157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES