Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(10):1031–1039. doi: 10.1289/ehp.021101031

In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.

Ivan D Dobrev 1, Melvin E Andersen 1, Raymond S H Yang 1
PMCID: PMC1241030  PMID: 12361929

Abstract

In this study, we integrated our understanding of biochemistry, physiology, and metabolism of three commonly used organic solvents with computer simulation to present a new approach that we call "in silico" toxicology. Thus, we developed an interactive physiologically based pharmacokinetic (PBPK) model to predict the individual kinetics of trichloroethylene (TCE), perchloroethylene (PERC), and methylchloroform (MC) in humans exposed to differently constituted chemical mixtures of the three solvents. Model structure and parameterization originate from the literature. We calibrated the single-compound PBPK models using published data and described metabolic interactions within the chemical mixture using kinetic constants estimated in rats. The mixture model was used to explore the general pharmacokinetic profile of two common biomarkers of exposure, peak TCE blood levels and total amount of TCE metabolites generated, in rats and humans. Assuming that a 10% change in the biomarkers corresponds to a significant health effect, we calculated interaction thresholds for binary and ternary mixtures of TCE, PERC, and MC. Increases in the TCE blood levels led to higher availability of the parent compound for glutathione conjugation, a metabolic pathway associated with kidney toxicity/carcinogenicity. The simulated change in production rates of toxic conjugative metabolites exceeded 17% for a corresponding 10% increase in TCE blood concentration, indicating a nonlinear risk increase due to combined exposures to TCE. Evaluation of metabolic interactions and their thresholds illustrates a unique application of PBPK modeling in risk assessment of occupational exposures to chemical mixtures.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders M. W., Dekant W. Glutathione-dependent bioactivation of haloalkenes. Annu Rev Pharmacol Toxicol. 1998;38:501–537. doi: 10.1146/annurev.pharmtox.38.1.501. [DOI] [PubMed] [Google Scholar]
  2. Andersen M. E. A physiologically based toxicokinetic description of the metabolism of inhaled gases and vapors: analysis at steady state. Toxicol Appl Pharmacol. 1981 Sep 30;60(3):509–526. doi: 10.1016/0041-008x(81)90338-0. [DOI] [PubMed] [Google Scholar]
  3. Andersen M. E., Gargas M. L., Clewell H. J., 3rd, Severyn K. M. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol Appl Pharmacol. 1987 Jun 30;89(2):149–157. doi: 10.1016/0041-008x(87)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Barton H. A., Clewell H. J., 3rd Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment. Environ Health Perspect. 2000 May;108 (Suppl 2):323–334. doi: 10.1289/ehp.00108s2323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barton H. A., Creech J. R., Godin C. S., Randall G. M., Seckel C. S. Chloroethylene mixtures: pharmacokinetic modeling and in vitro metabolism of vinyl chloride, trichloroethylene, and trans-1,2-dichloroethylene in rat. Toxicol Appl Pharmacol. 1995 Feb;130(2):237–247. doi: 10.1006/taap.1995.1029. [DOI] [PubMed] [Google Scholar]
  6. Barton H. A., Das S. Alternatives for a risk assessment on chronic noncancer effects from oral exposure to trichloroethylene. Regul Toxicol Pharmacol. 1996 Dec;24(3):269–285. doi: 10.1006/rtph.1996.0140. [DOI] [PubMed] [Google Scholar]
  7. Bernauer U., Birner G., Dekant W., Henschler D. Biotransformation of trichloroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Arch Toxicol. 1996;70(6):338–346. doi: 10.1007/s002040050283. [DOI] [PubMed] [Google Scholar]
  8. Bloemen L. J., Monster A. C., Kezic S., Commandeur J. N., Veulemans H., Vermeulen N. P., Wilmer J. W. Study on the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene in humans. Int Arch Occup Environ Health. 2001 Mar;74(2):102–108. doi: 10.1007/s004200000198. [DOI] [PubMed] [Google Scholar]
  9. Bogen K. T., Gold L. S. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points. Regul Toxicol Pharmacol. 1997 Feb;25(1):26–42. doi: 10.1006/rtph.1996.1070. [DOI] [PubMed] [Google Scholar]
  10. Brüning T., Bolt H. M. Renal toxicity and carcinogenicity of trichloroethylene: key results, mechanisms, and controversies. Crit Rev Toxicol. 2000 May;30(3):253–285. doi: 10.1080/10408440091159202. [DOI] [PubMed] [Google Scholar]
  11. Bull R. J. Mode of action of liver tumor induction by trichloroethylene and its metabolites, trichloroacetate and dichloroacetate. Environ Health Perspect. 2000 May;108 (Suppl 2):241–259. doi: 10.1289/ehp.00108s2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clewell H. J., 3rd, Gentry P. R., Covington T. R., Gearhart J. M. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect. 2000 May;108 (Suppl 2):283–305. doi: 10.1289/ehp.00108s2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobrev I. D., Andersen M. E., Yang R. S. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas uptake studies and PBPK modeling. Arch Toxicol. 2001 May;75(3):134–144. doi: 10.1007/s002040100216. [DOI] [PubMed] [Google Scholar]
  14. Droz P. O., Wu M. M., Cumberland W. G. Variability in biological monitoring of organic solvent exposure. II. Application of a population physiological model. Br J Ind Med. 1989 Aug;46(8):547–558. doi: 10.1136/oem.46.8.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fernandez J., Guberan E., Caperos J. Experimental human exposures to tetrachloroethylene vapor and elimination in breath after inhalation. Am Ind Hyg Assoc J. 1976 Mar;37(3):143–150. doi: 10.1080/0002889768507437. [DOI] [PubMed] [Google Scholar]
  16. Fisher J. W., Mahle D., Abbas R. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol Appl Pharmacol. 1998 Oct;152(2):339–359. doi: 10.1006/taap.1998.8486. [DOI] [PubMed] [Google Scholar]
  17. Fisher J. W. Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites. Environ Health Perspect. 2000 May;108 (Suppl 2):265–273. doi: 10.1289/ehp.00108s2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gargas M. L., Andersen M. E., Clewell H. J., 3rd A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol. 1986 Dec;86(3):341–352. doi: 10.1016/0041-008x(86)90361-3. [DOI] [PubMed] [Google Scholar]
  19. Green T., Dow J., Ellis M. K., Foster J. R., Odum J. The role of glutathione conjugation in the development of kidney tumours in rats exposed to trichloroethylene. Chem Biol Interact. 1997 Jul 11;105(2):99–117. doi: 10.1016/s0009-2797(97)00040-9. [DOI] [PubMed] [Google Scholar]
  20. Haddad S., Béliveau M., Tardif R., Krishnan K. A PBPK modeling-based approach to account for interactions in the health risk assessment of chemical mixtures. Toxicol Sci. 2001 Sep;63(1):125–131. doi: 10.1093/toxsci/63.1.125. [DOI] [PubMed] [Google Scholar]
  21. Henschler D., Vamvakas S., Lammert M., Dekant W., Kraus B., Thomas B., Ulm K. Increased incidence of renal cell tumors in a cohort of cardboard workers exposed to trichloroethene. Arch Toxicol. 1995;69(5):291–299. doi: 10.1007/s002040050173. [DOI] [PubMed] [Google Scholar]
  22. Jang J. Y., Droz P. O., Berode M. Ethnic differences in biological monitoring of several organic solvents. I. Human exposure experiment. Int Arch Occup Environ Health. 1997;69(5):343–349. doi: 10.1007/s004200050158. [DOI] [PubMed] [Google Scholar]
  23. Jang J. Y., Droz P. O., Chung H. K. Uncertainties in physiologically based pharmacokinetic models caused by several input parameters. Int Arch Occup Environ Health. 1999 Jul;72(4):247–254. doi: 10.1007/s004200050368. [DOI] [PubMed] [Google Scholar]
  24. Jang J. Y., Droz P. O., Kim S. Biological monitoring of workers exposed to ethylbenzene and co-exposed to xylene. Int Arch Occup Environ Health. 2001 Jan;74(1):31–37. doi: 10.1007/s004200000181. [DOI] [PubMed] [Google Scholar]
  25. Jang J. Y., Lee S. Y., Kim J. I., Park J. B., Lee K. J., Chung H. K. Application of biological monitoring to the quantitative exposure assessment for neuropsychological effect by chronic exposure to organic solvents. Int Arch Occup Environ Health. 1999 Mar;72(2):107–114. doi: 10.1007/s004200050345. [DOI] [PubMed] [Google Scholar]
  26. Krishnan K., Clewell H. J., 3rd, Andersen M. E. Physiologically based pharmacokinetic analyses of simple mixtures. Environ Health Perspect. 1994 Nov;102 (Suppl 9):151–155. doi: 10.1289/ehp.94102s9151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lash L. H., Fisher J. W., Lipscomb J. C., Parker J. C. Metabolism of trichloroethylene. Environ Health Perspect. 2000 May;108 (Suppl 2):177–200. doi: 10.1289/ehp.00108s2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Monster A. C., Boersma G., Steenweg H. Kinetics of tetrachloroethylene in volunteers; influence of exposure concentration and work load. Int Arch Occup Environ Health. 1979 Jan 15;42(3-4):303–309. doi: 10.1007/BF00377784. [DOI] [PubMed] [Google Scholar]
  29. Monster A. C. Difference in uptake, elimination, and metabolism in exposure to trichloroethylene, 1,1,1-trichloroethane and tetrachloroethylene. Int Arch Occup Environ Health. 1979 Jan 15;42(3-4):311–317. doi: 10.1007/BF00377785. [DOI] [PubMed] [Google Scholar]
  30. Mumtaz M. M., De Rosa C. T., Groten J., Feron V. J., Hansen H., Durkin P. R. Estimation of toxicity of chemical mixtures through modeling of chemical interactions. Environ Health Perspect. 1998 Dec;106 (Suppl 6):1353–1360. doi: 10.1289/ehp.98106s61353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nolan R. J., Freshour N. L., Rick D. L., McCarty L. P., Saunders J. H. Kinetics and metabolism of inhaled methyl chloroform (1,1,1-trichloroethane) in male volunteers. Fundam Appl Toxicol. 1984 Aug;4(4):654–662. doi: 10.1016/0272-0590(84)90057-5. [DOI] [PubMed] [Google Scholar]
  32. Ou Y. C., Conolly R. B., Thomas R. S., Xu Y., Andersen M. E., Chubb L. S., Pitot H. C., Yang R. S. A clonal growth model: time-course simulations of liver foci growth following penta- or hexachlorobenzene treatment in a medium-term bioassay. Cancer Res. 2001 Mar 1;61(5):1879–1889. [PubMed] [Google Scholar]
  33. Pelekis M., Krishnan K. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture. Regul Toxicol Pharmacol. 1997 Feb;25(1):79–86. doi: 10.1006/rtph.1996.1075. [DOI] [PubMed] [Google Scholar]
  34. Reitz R. H., Gargas M. L., Mendrala A. L., Schumann A. M. In vivo and in vitro studies of perchloroethylene metabolism for physiologically based pharmacokinetic modeling in rats, mice, and humans. Toxicol Appl Pharmacol. 1996 Feb;136(2):289–306. doi: 10.1006/taap.1996.0036. [DOI] [PubMed] [Google Scholar]
  35. Reitz R. H., McDougal J. N., Himmelstein M. W., Nolan R. J., Schumann A. M. Physiologically based pharmacokinetic modeling with methylchloroform: implications for interspecies, high dose/low dose, and dose route extrapolations. Toxicol Appl Pharmacol. 1988 Sep 15;95(2):185–199. doi: 10.1016/0041-008x(88)90155-x. [DOI] [PubMed] [Google Scholar]
  36. Tardif R., Charest-Tardif G. The importance of measured end-points in demonstrating the occurrence of interactions: a case study with methylchloroform and m-xylene. Toxicol Sci. 1999 Jun;49(2):312–317. doi: 10.1093/toxsci/49.2.312. [DOI] [PubMed] [Google Scholar]
  37. Tardif R., Laparé S., Charest-Tardif G., Brodeur J., Krishnan K. Physiologically-based pharmacokinetic modeling of a mixture of toluene and xylene in humans. Risk Anal. 1995 Jun;15(3):335–342. doi: 10.1111/j.1539-6924.1995.tb00326.x. [DOI] [PubMed] [Google Scholar]
  38. Tardif R., Laparé S., Krishnan K., Brodeur J. Physiologically based modeling of the toxicokinetic interaction between toluene and m-xylene in the rat. Toxicol Appl Pharmacol. 1993 Jun;120(2):266–273. doi: 10.1006/taap.1993.1111. [DOI] [PubMed] [Google Scholar]
  39. Thomas R. S., Bigelow P. L., Keefe T. J., Yang R. S. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am Ind Hyg Assoc J. 1996 Jan;57(1):23–32. doi: 10.1080/15428119691015188. [DOI] [PubMed] [Google Scholar]
  40. Thomas R. S., Yang R. S., Morgan D. G., Moorman M. P., Kermani H. R., Sloane R. A., O'Connor R. W., Adkins B., Jr, Gargas M. L., Andersen M. E. PBPK modeling/Monte Carlo simulation of methylene chloride kinetic changes in mice in relation to age and acute, subchronic, and chronic inhalation exposure. Environ Health Perspect. 1996 Aug;104(8):858–865. doi: 10.1289/ehp.96104858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ward R. C., Travis C. C., Hetrick D. M., Andersen M. E., Gargas M. L. Pharmacokinetics of tetrachloroethylene. Toxicol Appl Pharmacol. 1988 Mar 30;93(1):108–117. doi: 10.1016/0041-008x(88)90030-0. [DOI] [PubMed] [Google Scholar]
  42. Wu C., Schaum J. Exposure assessment of trichloroethylene. Environ Health Perspect. 2000 May;108 (Suppl 2):359–363. doi: 10.1289/ehp.00108s2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. el-Masri H. A., Constan A. A., Ramsdell H. S., Yang R. S. Physiologically based pharmacodynamic modeling of an interaction threshold between trichloroethylene and 1,1-dichloroethylene in Fischer 344 rats. Toxicol Appl Pharmacol. 1996 Nov;141(1):124–132. doi: 10.1006/taap.1996.0268. [DOI] [PubMed] [Google Scholar]
  44. el-Masri H. A., Tessari J. D., Yang R. S. Exploration of an interaction threshold for the joint toxicity of trichloroethylene and 1,1-dichloroethylene: utilization of a PBPK model. Arch Toxicol. 1996;70(9):527–539. doi: 10.1007/s002040050310. [DOI] [PubMed] [Google Scholar]
  45. el-Masri H. A., Thomas R. S., Sabados G. R., Phillips J. K., Constan A. A., Benjamin S. A., Andersen M. E., Mehendale H. M., Yang R. S. Physiologically based pharmacokinetic/pharmacodynamic modeling of the toxicologic interaction between carbon tetrachloride and Kepone. Arch Toxicol. 1996;70(11):704–713. doi: 10.1007/s002040050331. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES