Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Nov;110(11):1081–1085. doi: 10.1289/ehp.021101081

Developmental toxicity of a commercial herbicide mixture in mice: I. Effects on embryo implantation and litter size.

María Fernanda Cavieres 1, James Jaeger 1, Warren Porter 1
PMCID: PMC1241063  PMID: 12417478

Abstract

We investigated the developmental toxicity in mice of a common commercial formulation of herbicide containing a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D), mecoprop, dicamba, and inactive ingredients. Pregnant mice were exposed to one of four different doses of the herbicide mixture diluted in their drinking water, either during preimplantation and organogenesis or only during organogenesis. Litter size, birth weight, and crown-rump length were determined at birth, and pups were allowed to lactate and grow without additional herbicide exposure so that they could be subjected to additional immune, endocrine, and behavioral studies, the results of which will be reported in a separate article. At weaning, dams were sacrificed, and the number of implantation sites was determined. The data, although apparently influenced by season, showed an inverted or U-shaped dose-response pattern for reduced litter size, with the low end of the dose range producing the greatest decrease in the number of live pups born. The decrease in litter size was associated with a decrease in the number of implantation sites, but only at very low and low environmentally relevant doses. Fetotoxicity, as evidenced by a decrease in weight and crown-rump length of the newborn pups or embryo resorption, was not significantly different in the herbicide-treated litters.

Full Text

The Full Text of this article is available as a PDF (528.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell E. M., Hertz-Picciotto I., Beaumont J. J. A case-control study of pesticides and fetal death due to congenital anomalies. Epidemiology. 2001 Mar;12(2):148–156. doi: 10.1097/00001648-200103000-00005. [DOI] [PubMed] [Google Scholar]
  2. Blatter B. M., Roeleveld N., Zielhuis G. A., Gabreëls F. J., Verbeek A. L. Maternal occupational exposure during pregnancy and the risk of spina bifida. Occup Environ Med. 1996 Feb;53(2):80–86. doi: 10.1136/oem.53.2.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradberry S. M., Watt B. E., Proudfoot A. T., Vale J. A. Mechanisms of toxicity, clinical features, and management of acute chlorophenoxy herbicide poisoning: a review. J Toxicol Clin Toxicol. 2000;38(2):111–122. doi: 10.1081/clt-100100925. [DOI] [PubMed] [Google Scholar]
  4. Collins T. F., Williams C. H. Teratogenic studies with 2,4,5-T and 2,4-D in the hamster. Bull Environ Contam Toxicol. 1971 Nov-Dec;6(6):559–567. doi: 10.1007/BF01796866. [DOI] [PubMed] [Google Scholar]
  5. Curtis K. M., Savitz D. A., Weinberg C. R., Arbuckle T. E. The effect of pesticide exposure on time to pregnancy. Epidemiology. 1999 Mar;10(2):112–117. [PubMed] [Google Scholar]
  6. Garry V. F., Schreinemachers D., Harkins M. E., Griffith J. Pesticide appliers, biocides, and birth defects in rural Minnesota. Environ Health Perspect. 1996 Apr;104(4):394–399. doi: 10.1289/ehp.96104394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoffman D. J., Albers P. H. Evaluation of potential embryotoxicity and teratogenicity of 42 herbicides, insecticides, and petroleum contaminants to mallard eggs. Arch Environ Contam Toxicol. 1984 Jan;13(1):15–27. doi: 10.1007/BF01055642. [DOI] [PubMed] [Google Scholar]
  8. Kristensen P., Irgens L. M., Andersen A., Bye A. S., Sundheim L. Birth defects among offspring of Norwegian farmers, 1967-1991. Epidemiology. 1997 Sep;8(5):537–544. doi: 10.1097/00001648-199709000-00011. [DOI] [PubMed] [Google Scholar]
  9. Lin N., Garry V. F. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota. J Toxicol Environ Health A. 2000 Jul 28;60(6):423–439. doi: 10.1080/00984100050033494. [DOI] [PubMed] [Google Scholar]
  10. Oakes D. J., Pollack J. K. Effects of a herbicide formulation, Tordon 75D, and its individual components on the oxidative functions of mitochondria. Toxicology. 1999 Aug 13;136(1):41–52. doi: 10.1016/s0300-483x(99)00055-4. [DOI] [PubMed] [Google Scholar]
  11. Olson L. J., Erickson B. J., Hinsdill R. D., Wyman J. A., Porter W. P., Binning L. K., Bidgood R. C., Nordheim E. V. Aldicarb immunomodulation in mice: an inverse dose-response to parts per billion levels in drinking water. Arch Environ Contam Toxicol. 1987 Jul;16(4):433–439. doi: 10.1007/BF01055264. [DOI] [PubMed] [Google Scholar]
  12. Pastore L. M., Hertz-Picciotto I., Beaumont J. J. Risk of stillbirth from occupational and residential exposures. Occup Environ Med. 1997 Jul;54(7):511–518. doi: 10.1136/oem.54.7.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwetz B. A., Sparschu G. L., Gehring P. J. The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) and esters of 2,4-D on rat embryonal, foetal and neonatal growth and development. Food Cosmet Toxicol. 1971 Dec;9(6):801–817. doi: 10.1016/0015-6264(71)90232-x. [DOI] [PubMed] [Google Scholar]
  14. Shaw G. M., Wasserman C. R., O'Malley C. D., Nelson V., Jackson R. J. Maternal pesticide exposure from multiple sources and selected congenital anomalies. Epidemiology. 1999 Jan;10(1):60–66. [PubMed] [Google Scholar]
  15. Tominack R. L. Herbicide formulations. J Toxicol Clin Toxicol. 2000;38(2):129–135. doi: 10.1081/clt-100100927. [DOI] [PubMed] [Google Scholar]
  16. de Cock J., Westveer K., Heederik D., te Velde E., van Kooij R. Time to pregnancy and occupational exposure to pesticides in fruit growers in The Netherlands. Occup Environ Med. 1994 Oct;51(10):693–699. doi: 10.1136/oem.51.10.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. vom Saal F. S., Nagel S. C., Palanza P., Boechler M., Parmigiani S., Welshons W. V. Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicol Lett. 1995 May;77(1-3):343–350. doi: 10.1016/0378-4274(95)03316-5. [DOI] [PubMed] [Google Scholar]
  18. vom Saal F. S., Timms B. G., Montano M. M., Palanza P., Thayer K. A., Nagel S. C., Dhar M. D., Ganjam V. K., Parmigiani S., Welshons W. V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2056–2061. doi: 10.1073/pnas.94.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES