Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Nov;110(11):1087–1096. doi: 10.1289/ehp.021101087

Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.

Estelle Fach 1, W James Waldman 1, Marshall Williams 1, John Long 1, Richard K Meister 1, Prabir K Dutta 1
PMCID: PMC1241064  PMID: 12417479

Abstract

Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction depended on the type of zeolite, suggesting that the surface structure of the zeolite plays an important role.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamis Z., Tátrai E., Honma K., Six E., Ungváry G. In vitro and in vivo tests for determination of the pathogenicity of quartz, diatomaceous earth, mordenite and clinoptilolite. Ann Occup Hyg. 2000 Jan;44(1):67–74. [PubMed] [Google Scholar]
  2. Babbs C. F., Steiner M. G. Detection and quantitation of hydroxyl radical using dimethyl sulfoxide as molecular probe. Methods Enzymol. 1990;186:137–147. doi: 10.1016/0076-6879(90)86103-3. [DOI] [PubMed] [Google Scholar]
  3. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
  4. Crouch E. Pathobiology of pulmonary fibrosis. Am J Physiol. 1990 Oct;259(4 Pt 1):L159–L184. doi: 10.1152/ajplung.1990.259.4.L159. [DOI] [PubMed] [Google Scholar]
  5. De Vuyst P., Dumortier P., Swaen G. M., Pairon J. C., Brochard P. Respiratory health effects of man-made vitreous (mineral) fibres. Eur Respir J. 1995 Dec;8(12):2149–2173. doi: 10.1183/09031936.95.08122149. [DOI] [PubMed] [Google Scholar]
  6. Dörger M., Münzing S., Allmeling A. M., Messmer K., Krombach F. Differential responses of rat alveolar and peritoneal macrophages to man-made vitreous fibers in vitro. Environ Res. 2001 Mar;85(3):207–214. doi: 10.1006/enrs.2001.4234. [DOI] [PubMed] [Google Scholar]
  7. Eborn S. K., Aust A. E. Effect of iron acquisition on induction of DNA single-strand breaks by erionite, a carcinogenic mineral fiber. Arch Biochem Biophys. 1995 Jan 10;316(1):507–514. doi: 10.1006/abbi.1995.1067. [DOI] [PubMed] [Google Scholar]
  8. Fubini B., Mollo L., Giamello E. Free radical generation at the solid/liquid interface in iron containing minerals. Free Radic Res. 1995 Dec;23(6):593–614. doi: 10.3109/10715769509065280. [DOI] [PubMed] [Google Scholar]
  9. Fubini B., Mollo L. Role of iron in the reactivity of mineral fibers. Toxicol Lett. 1995 Dec;82-83:951–960. doi: 10.1016/0378-4274(95)03531-1. [DOI] [PubMed] [Google Scholar]
  10. Graf E., Mahoney J. R., Bryant R. G., Eaton J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem. 1984 Mar 25;259(6):3620–3624. [PubMed] [Google Scholar]
  11. Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
  12. Helmke R. J., Boyd R. L., German V. F., Mangos J. A. From growth factor dependence to growth factor responsiveness: the genesis of an alveolar macrophage cell line. In Vitro Cell Dev Biol. 1987 Aug;23(8):567–574. doi: 10.1007/BF02620974. [DOI] [PubMed] [Google Scholar]
  13. Helmke R. J., German V. F., Mangos J. A. A continuous alveolar macrophage cell line: comparisons with freshly derived alveolar macrophages. In Vitro Cell Dev Biol. 1989 Jan;25(1):44–48. doi: 10.1007/BF02624409. [DOI] [PubMed] [Google Scholar]
  14. Hempel S. L., Buettner G. R., O'Malley Y. Q., Wessels D. A., Flaherty D. M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med. 1999 Jul;27(1-2):146–159. doi: 10.1016/s0891-5849(99)00061-1. [DOI] [PubMed] [Google Scholar]
  15. Heppleston A. G. Minerals, fibrosis, and the lung. Environ Health Perspect. 1991 Aug;94:149–168. doi: 10.1289/ehp.94-1567953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hogg B. D., Dutta P. K., Long J. F. In vitro interaction of zeolite fibers with individual cells (macrophages NR8383): measurement of intracellular oxidative burst. Anal Chem. 1996 Jul 15;68(14):2309–2312. doi: 10.1021/ac960176c. [DOI] [PubMed] [Google Scholar]
  17. Janero D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2. [DOI] [PubMed] [Google Scholar]
  18. Long J. F., Dutta P. K., Hogg B. D. Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers. Environ Health Perspect. 1997 Jul;105(7):706–711. doi: 10.1289/ehp.97105706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maples K. R., Johnson N. F. Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans. Carcinogenesis. 1992 Nov;13(11):2035–2039. doi: 10.1093/carcin/13.11.2035. [DOI] [PubMed] [Google Scholar]
  20. Mossman B. T., Sesko A. M. In vitro assays to predict the pathogenicity of mineral fibers. Toxicology. 1990 Jan-Feb;60(1-2):53–61. doi: 10.1016/0300-483x(90)90162-a. [DOI] [PubMed] [Google Scholar]
  21. Palekar L. D., Most B. M., Coffin D. L. Significance of mass and number of fibers in the correlation of V79 cytotoxicity with tumorigenic potential of mineral fibers. Environ Res. 1988 Aug;46(2):142–152. doi: 10.1016/s0013-9351(88)80028-8. [DOI] [PubMed] [Google Scholar]
  22. Quinlan T. R., BéruBé K. A., Marsh J. P., Janssen Y. M., Taishi P., Leslie K. O., Hemenway D., O'Shaughnessy P. T., Vacek P., Mossman B. T. Patterns of inflammation, cell proliferation, and related gene expression in lung after inhalation of chrysotile asbestos. Am J Pathol. 1995 Sep;147(3):728–739. [PMC free article] [PubMed] [Google Scholar]
  23. Refsgaard H. H., Tsai L., Stadtman E. R. Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):611–616. doi: 10.1073/pnas.97.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rom W. N., Travis W. D., Brody A. R. Cellular and molecular basis of the asbestos-related diseases. Am Rev Respir Dis. 1991 Feb;143(2):408–422. doi: 10.1164/ajrccm/143.2.408. [DOI] [PubMed] [Google Scholar]
  25. Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
  26. Singh S., Hider R. C. Colorimetric detection of the hydroxyl radical: comparison of the hydroxyl-radical-generating ability of various iron complexes. Anal Biochem. 1988 May 15;171(1):47–54. doi: 10.1016/0003-2697(88)90123-6. [DOI] [PubMed] [Google Scholar]
  27. Steiner M. G., Babbs C. F. Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide. Arch Biochem Biophys. 1990 May 1;278(2):478–481. doi: 10.1016/0003-9861(90)90288-a. [DOI] [PubMed] [Google Scholar]
  28. Stringer B., Kobzik L. Measurement of environmental particulate uptake by lung cells using flow cytometry. Methods Mol Biol. 1998;91:109–116. doi: 10.1385/0-89603-354-6:109. [DOI] [PubMed] [Google Scholar]
  29. Timblin C. R., Guthrie G. D., Janssen Y. W., Walsh E. S., Vacek P., Mossman B. T. Patterns of c-fos and c-jun proto-oncogene expression, apoptosis, and proliferation in rat pleural mesothelial cells exposed to erionite or asbestos fibers. Toxicol Appl Pharmacol. 1998 Jul;151(1):88–97. doi: 10.1006/taap.1998.8450. [DOI] [PubMed] [Google Scholar]
  30. Urano N., Yano E., Evans P. H. Reactive oxygen metabolites produced by the carcinogenic fibrous mineral erionite. Environ Res. 1991 Feb;54(1):74–81. doi: 10.1016/s0013-9351(05)80195-1. [DOI] [PubMed] [Google Scholar]
  31. Wagner J. C., Skidmore J. W., Hill R. J., Griffiths D. M. Erionite exposure and mesotheliomas in rats. Br J Cancer. 1985 May;51(5):727–730. doi: 10.1038/bjc.1985.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wright W. E., Rom W. N., Moatamed F. Characterization of zeolite fiber sizes using scanning electron microscopy. Arch Environ Health. 1983 Mar-Apr;38(2):99–103. doi: 10.1080/00039896.1983.10543988. [DOI] [PubMed] [Google Scholar]
  33. Xu A., Wu L. J., Santella R. M., Hei T. K. Role of oxyradicals in mutagenicity and DNA damage induced by crocidolite asbestos in mammalian cells. Cancer Res. 1999 Dec 1;59(23):5922–5926. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES