Abstract
Polychlorinated biphenyls (PCBs) reduce tissue dopamine (DA) concentrations and increase media DA concentrations in both in vitro preparations of bovine adrenal chromaffin cells and adult rat striatal tissue. To determine whether these changes also occur in the intact animal, we used in vivo microdialysis to determine changes in concentrations of DA in striatal dialysates from freely moving adult male rats after exposure to 25 mg/kg/day Aroclor 1254 for varying periods of time. We also determined DA concentrations in striatal tissue obtained postmortem from similarly treated animals. The effects of PCBs on dialysate DA concentrations depended on the length of exposure; DA concentrations were significantly elevated after 3 days of exposure and were significantly reduced after exposure for periods of 1 week or longer. On the other hand, striatal tissue concentrations of DA, determined postmortem in rats exposed to PCBs for the same periods of time, were not significantly altered. We suggest that these time-dependent alterations in dialysate DA concentrations a) reflect PCB-induced alterations of both plasma membrane and vesicular DA transporter function; b) provide a more sensitive index of altered central DA function after exposure to PCBs than does measurement of postmortem tissue DA concentrations; and c) play an important role in mediating some PCB-mediated changes in behavior.
Full Text
The Full Text of this article is available as a PDF (521.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnsten A. F. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol. 1997;11(2):151–162. doi: 10.1177/026988119701100208. [DOI] [PubMed] [Google Scholar]
- Bemis J. C., Seegal R. F. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro. Environ Health Perspect. 1999 Nov;107(11):879–885. doi: 10.1289/ehp.99107879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman S. B., Zigmond M. J., Hastings T. G. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem. 1996 Aug;67(2):593–600. doi: 10.1046/j.1471-4159.1996.67020593.x. [DOI] [PubMed] [Google Scholar]
- Bonanno G., Sala R., Cancedda L., Cavazzani P., Cossu M., Raiteri M. Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intraterminal calcium. Br J Pharmacol. 2000 Apr;129(8):1780–1786. doi: 10.1038/sj.bjp.0703251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chishti M. A., Fisher J. P., Seegal R. F. Aroclors 1254 and 1260 reduce dopamine concentrations in rat striatal slices. Neurotoxicology. 1996 Fall-Winter;17(3-4):653–660. [PubMed] [Google Scholar]
- Chiueh C. C., Moore K. E. D-amphetamine-induced release of "newly synthesized" and "stored" dopamine from the caudate nucleus in vivo. J Pharmacol Exp Ther. 1975 Mar;192(3):642–653. [PubMed] [Google Scholar]
- Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol. 1995 Nov;135(1):77–88. doi: 10.1006/taap.1995.1210. [DOI] [PubMed] [Google Scholar]
- Imperato A., Obinu M. C., Carta G., Mascia M. S., Casu M. A., Gessa G. L. Reduction of dopamine release and synthesis by repeated amphetamine treatment: role in behavioral sensitization. Eur J Pharmacol. 1996 Dec 19;317(2-3):231–237. doi: 10.1016/s0014-2999(96)00742-x. [DOI] [PubMed] [Google Scholar]
- Jacobson J. L., Jacobson S. W. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med. 1996 Sep 12;335(11):783–789. doi: 10.1056/NEJM199609123351104. [DOI] [PubMed] [Google Scholar]
- Javoy F., Glowinski J. Dynamic characteristic of the 'functional compartment' of dopamine in dopaminergic terminals of the rat striatum. J Neurochem. 1971 Jul;18(7):1305–1311. doi: 10.1111/j.1471-4159.1971.tb00230.x. [DOI] [PubMed] [Google Scholar]
- Jones S. R., Gainetdinov R. R., Wightman R. M., Caron M. G. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci. 1998 Mar 15;18(6):1979–1986. doi: 10.1523/JNEUROSCI.18-06-01979.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehr J. A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Methods. 1993 Jul;48(3):251–261. doi: 10.1016/0165-0270(93)90096-a. [DOI] [PubMed] [Google Scholar]
- Kodavanti P. R., Derr-Yellin E. C., Mundy W. R., Shafer T. J., Herr D. W., Barone S., Choksi N. Y., MacPhail R. C., Tilson H. A. Repeated exposure of adult rats to Aroclor 1254 causes brain region-specific changes in intracellular Ca2+ buffering and protein kinase C activity in the absence of changes in tyrosine hydroxylase. Toxicol Appl Pharmacol. 1998 Dec;153(2):186–198. doi: 10.1006/taap.1998.8533. [DOI] [PubMed] [Google Scholar]
- Kodavanti P. R., Ward T. R., McKinney J. D., Tilson H. A. Inhibition of microsomal and mitochondrial Ca2+-sequestration in rat cerebellum by polychlorinated biphenyl mixtures and congeners. Structure-activity relationships. Arch Toxicol. 1996;70(3-4):150–157. doi: 10.1007/s002040050254. [DOI] [PubMed] [Google Scholar]
- Kuczenski R. Differential effects of reserpine and tetrabenazine on rat striatal synaptosomal dopamine biosynthesis and synaptosomal dopamine pools. J Pharmacol Exp Ther. 1977 May;201(2):357–367. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaVoie M. J., Hastings T. G. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci. 1999 Feb 15;19(4):1484–1491. doi: 10.1523/JNEUROSCI.19-04-01484.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mariussen E., Morch Andersen J., Fonnum F. The effect of polychlorinated biphenyls on the uptake of dopamine and other neurotransmitters into rat brain synaptic vesicles. Toxicol Appl Pharmacol. 1999 Dec 15;161(3):274–282. doi: 10.1006/taap.1999.8806. [DOI] [PubMed] [Google Scholar]
- McMillen B. A., German D. C., Shore P. A. Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem Pharmacol. 1980 Nov 15;29(22):3045–3050. doi: 10.1016/0006-2952(80)90444-x. [DOI] [PubMed] [Google Scholar]
- Messeri M. D., Bickmeyer U., Weinsberg F., Wiegand H. Congener specific effects by polychlorinated biphenyls on catecholamine content and release in chromaffin cells. Arch Toxicol. 1997;71(7):416–421. doi: 10.1007/s002040050405. [DOI] [PubMed] [Google Scholar]
- Miller J. W., Selhub J., Joseph J. A. Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med. 1996;21(2):241–249. doi: 10.1016/0891-5849(96)00033-0. [DOI] [PubMed] [Google Scholar]
- Minami M., Takahashi T., Maruyama W., Takahashi A., Dostert P., Nagatsu T., Naoi M. Inhibition of tyrosine hydroxylase by R and S enantiomers of salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. J Neurochem. 1992 Jun;58(6):2097–2101. doi: 10.1111/j.1471-4159.1992.tb10951.x. [DOI] [PubMed] [Google Scholar]
- Nakachi N., Kiuchi Y., Inagaki M., Inazu M., Yamazaki Y., Oguchi K. Effects of various dopamine uptake inhibitors on striatal extracellular dopamine levels and behaviours in rats. Eur J Pharmacol. 1995 Aug 4;281(2):195–203. doi: 10.1016/0014-2999(95)00246-h. [DOI] [PubMed] [Google Scholar]
- Nakamura S., Goshima Y., Yue J. L., Misu Y. Transmitter-like basal and K(+)-evoked release of 3,4-dihydroxyphenylalanine from the striatum in conscious rats studied by microdialysis. J Neurochem. 1992 Jan;58(1):270–275. doi: 10.1111/j.1471-4159.1992.tb09306.x. [DOI] [PubMed] [Google Scholar]
- Patandin S., Lanting C. I., Mulder P. G., Boersma E. R., Sauer P. J., Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr. 1999 Jan;134(1):33–41. doi: 10.1016/s0022-3476(99)70369-0. [DOI] [PubMed] [Google Scholar]
- Roegge C. S., Seo B. W., Crofton K. M., Schantz S. L. Gestational-lactational exposure to Aroclor 1254 impairs radial-arm maze performance in male rats. Toxicol Sci. 2000 Sep;57(1):121–130. doi: 10.1093/toxsci/57.1.121. [DOI] [PubMed] [Google Scholar]
- Rosin D. L., Martin B. R. Neurochemical and behavioral effects of polychlorinated biphenyls in mice. Neurotoxicology. 1981 Dec;2(4):749–764. [PubMed] [Google Scholar]
- Seegal R. F., Brosch K. O., Bush B. High-performance liquid chromatography of biogenic amines and metabolites in brain, cerebrospinal fluid, urine and plasma. J Chromatogr. 1986 Apr 25;377:131–144. doi: 10.1016/s0378-4347(00)80768-9. [DOI] [PubMed] [Google Scholar]
- Seegal R. F., Brosch K. O., Okoniewski R. J. Effects of in utero and lactational exposure of the laboratory rat to 2,4,2',4'- and 3,4,3',4'-tetrachlorobiphenyl on dopamine function. Toxicol Appl Pharmacol. 1997 Sep;146(1):95–103. doi: 10.1006/taap.1997.8226. [DOI] [PubMed] [Google Scholar]
- Seegal R. F., Bush B., Brosch K. O. Sub-chronic exposure of the adult rat to Aroclor 1254 yields regionally-specific changes in central dopaminergic function. Neurotoxicology. 1991 Spring;12(1):55–65. [PubMed] [Google Scholar]
- Shain W., Bush B., Seegal R. Neurotoxicity of polychlorinated biphenyls: structure-activity relationship of individual congeners. Toxicol Appl Pharmacol. 1991 Oct;111(1):33–42. doi: 10.1016/0041-008x(91)90131-w. [DOI] [PubMed] [Google Scholar]
- Sokolowski J. D., Salamone J. D. Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res. 1994 Apr 11;642(1-2):20–28. doi: 10.1016/0006-8993(94)90901-6. [DOI] [PubMed] [Google Scholar]
- Stewart P., Reihman J., Lonky E., Darvill T., Pagano J. Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicol Teratol. 2000 Jan-Feb;22(1):21–29. doi: 10.1016/s0892-0362(99)00056-2. [DOI] [PubMed] [Google Scholar]
- Teng L., Crooks P. A., Sonsalla P. K., Dwoskin L. P. Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther. 1997 Mar;280(3):1432–1444. [PubMed] [Google Scholar]
- Voie O. A., Fonnum F. Effect of polychlorinated biphenyls on production of reactive oxygen species (ROS) in rat synaptosomes. Arch Toxicol. 2000 Jan;73(10-11):588–593. doi: 10.1007/s002040050012. [DOI] [PubMed] [Google Scholar]
- Wolf M. E., Roth R. H. Autoreceptor regulation of dopamine synthesis. Ann N Y Acad Sci. 1990;604:323–343. doi: 10.1111/j.1749-6632.1990.tb32003.x. [DOI] [PubMed] [Google Scholar]
- Yavich L., MacDonald E. Dopamine release from pharmacologically distinct storage pools in rat striatum following stimulation at frequency of neuronal bursting. Brain Res. 2000 Jul 7;870(1-2):73–79. doi: 10.1016/s0006-8993(00)02403-3. [DOI] [PubMed] [Google Scholar]
- Yavich L. Two simultaneously working storage pools of dopamine in mouse caudate and nucleus accumbens. Br J Pharmacol. 1996 Nov;119(5):869–876. doi: 10.1111/j.1476-5381.1996.tb15753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zetterström T., Sharp T., Collin A. K., Ungerstedt U. In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC. Eur J Pharmacol. 1988 Apr 13;148(3):327–334. doi: 10.1016/0014-2999(88)90110-0. [DOI] [PubMed] [Google Scholar]