Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Nov;110(11):1127–1132. doi: 10.1289/ehp.021101127

Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

Stefan J Hoeger 1, Daniel R Dietrich 1, Bettina C Hitzfeld 1
PMCID: PMC1241069  PMID: 12417484

Abstract

Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms.

Full Text

The Full Text of this article is available as a PDF (553.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeVries S. E., Galey F. D., Namikoshi M., Woo J. C. Clinical and pathologic findings of blue-green algae (Microcystis aeruginosa) intoxication in a dog. J Vet Diagn Invest. 1993 Jul;5(3):403–408. doi: 10.1177/104063879300500317. [DOI] [PubMed] [Google Scholar]
  2. Fischer WJ, Dietrich DR. Toxicity of the cyanobacterial cyclic heptapeptide toxins microcystin-LR and -RR in early life-stages of the African clawed frog (Xenopus laevis). Aquat Toxicol. 2000 Jun 1;49(3):189–198. doi: 10.1016/s0166-445x(99)00079-x. [DOI] [PubMed] [Google Scholar]
  3. Fujiki H., Suganuma M. Unique features of the okadaic acid activity class of tumor promoters. J Cancer Res Clin Oncol. 1999;125(3-4):150–155. doi: 10.1007/s004320050257. [DOI] [PubMed] [Google Scholar]
  4. Harada K., Oshikata M., Uchida H., Suzuki M., Kondo F., Sato K., Ueno Y., Yu S. Z., Chen G., Chen G. C. Detection and identification of microcystins in the drinking water of Haimen City, China. Nat Toxins. 1996;4(6):277–283. doi: 10.1002/(SICI)(1996)4:6<277::AID-NT5>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  5. Harding W. R., Rowe N., Wessels J. C., Beattie K. A., Codd G. A. Death of a dog attributed to the cyanobacterial (blue-green algal) hepatotoxin nodularin in South Africa. J S Afr Vet Assoc. 1995 Dec;66(4):256–259. [PubMed] [Google Scholar]
  6. Hitzfeld B. C., Höger S. J., Dietrich D. R. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect. 2000 Mar;108 (Suppl 1):113–122. doi: 10.1289/ehp.00108s1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jochimsen E. M., Carmichael W. W., An J. S., Cardo D. M., Cookson S. T., Holmes C. E., Antunes M. B., de Melo Filho D. A., Lyra T. M., Barreto V. S. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med. 1998 Mar 26;338(13):873–878. doi: 10.1056/NEJM199803263381304. [DOI] [PubMed] [Google Scholar]
  8. Matsunaga H., Harada K. I., Senma M., Ito Y., Yasuda N., Ushida S., Kimura Y. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria. Nat Toxins. 1999;7(2):81–84. doi: 10.1002/(sici)1522-7189(199903/04)7:2<81::aid-nt44>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  9. Meriluoto J., Lawton L., Harada K. Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. Methods Mol Biol. 2000;145:65–87. doi: 10.1385/1-59259-052-7:65. [DOI] [PubMed] [Google Scholar]
  10. Pouria S., de Andrade A., Barbosa J., Cavalcanti R. L., Barreto V. T., Ward C. J., Preiser W., Poon G. K., Neild G. H., Codd G. A. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 1998 Jul 4;352(9121):21–26. doi: 10.1016/s0140-6736(97)12285-1. [DOI] [PubMed] [Google Scholar]
  11. Puschner B., Galey F. D., Johnson B., Dickie C. W., Vondy M., Francis T., Holstege D. M. Blue-green algae toxicosis in cattle. J Am Vet Med Assoc. 1998 Dec 1;213(11):1605-7, 1571. [PubMed] [Google Scholar]
  12. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steward C. D., Wallace D., Hubert S. K., Lawton R., Fridkin S. K., Gaynes R. P., McGowan J. E., Jr, Tenover F. C. Ability of laboratories to detect emerging antimicrobial resistance in nosocomial pathogens: a survey of project ICARE laboratories. Diagn Microbiol Infect Dis. 2000 Sep;38(1):59–67. doi: 10.1016/s0732-8893(00)00161-9. [DOI] [PubMed] [Google Scholar]
  14. Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Watanabe M. F., Park H. D., Chen G. C., Chen G., Yu S. Z. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis. 1996 Jun;17(6):1317–1321. doi: 10.1093/carcin/17.6.1317. [DOI] [PubMed] [Google Scholar]
  15. Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Yoshida F., Suttajit M., Mebs D., Pütsch M., Vasconcelos V. Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Nat Toxins. 1996;4(6):271–276. doi: 10.1002/(SICI)(1996)4:6<271::AID-NT4>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  16. Van Halderen A., Harding W. R., Wessels J. C., Schneider D. J., Heine E. W., Van der Merwe J., Fourie J. M. Cyanobacterial (blue-green algae) poisoning of livestock in the western Cape Province of South Africa. J S Afr Vet Assoc. 1995 Dec;66(4):260–264. [PubMed] [Google Scholar]
  17. Vasconcelos V. M. Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz J Med Biol Res. 1999 Mar;32(3):249–254. doi: 10.1590/s0100-879x1999000300001. [DOI] [PubMed] [Google Scholar]
  18. Wirsing B., Hoffmann L., Heinze R., Klein D., Daloze D., Braekman J. C., Weckesser J. First report on the identification of microcystin in a water bloom collected in Belgium. Syst Appl Microbiol. 1998 Mar;21(1):23–27. doi: 10.1016/S0723-2020(98)80004-0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES