Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(12):1185–1190. doi: 10.1289/ehp.021101185

Cadmium in blood and urine--impact of sex, age, dietary intake, iron status, and former smoking--association of renal effects.

Ing-Marie Olsson 1, Inger Bensryd 1, Thomas Lundh 1, Helena Ottosson 1, Staffan Skerfving 1, Agneta Oskarsson 1
PMCID: PMC1241104  PMID: 12460796

Abstract

We studied determinants of cadmium status and kidney function in nonsmoking men and women living on farms in southern Sweden. Median blood Cd (BCd) was 1.8 nmol/L (range, 0.38-18) and median urinary Cd (UCd) was 0.23 nmol/mmol creatinine (range, 0.065-0.99). The intake of Cd per kilogram body weight did not significantly differ between sexes and did not correlate with BCd or UCd, which may be explained by a low and varying bioavailibility of Cd from food items. However, when a subgroup of the study population, couples of never-smoking men and women, were compared, a lower intake per kilogram body weight was found in the women, but the women had a 1.8 times higher BCd and a 1.4 times higher UCd. The higher female BCd and UCd may be explained by higher absorption due to low iron status. BCd and UCd both increased with age and were higher in the ex-smokers, who had stopped smoking more than 5 years before the study, compared to never-smokers. The contribution of locally produced food to the total Cd intake was relatively low and varied. Males living in areas with low soil Cd had lower UCd than the others. However, Cd levels in kidneys from pigs, fed locally produced cereals, did not predict BCd or UCd in humans at the same farms. The kidney function parameter ss2-microglobulin-creatinine clearance was related to UCd, whereas urinary protein-HC, N-acetyl-ss-glucoseaminidase or albumin-creatinine clearance was not when age was accounted for. Hence, even at the low exposure levels in this study population, there was an indication of effect on biochemical markers of renal function.

Full Text

The Full Text of this article is available as a PDF (542.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker W., Kumpulainen J. Contents of essential and toxic mineral elements in Swedish market-basket diets in 1987. Br J Nutr. 1991 Sep;66(2):151–160. doi: 10.1079/bjn19910021. [DOI] [PubMed] [Google Scholar]
  2. Berglund M., Akesson A., Nermell B., Vahter M. Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect. 1994 Dec;102(12):1058–1066. doi: 10.1289/ehp.941021058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Björkman L., Vahter M., Pedersen N. L. Both the environment and genes are important for concentrations of cadmium and lead in blood. Environ Health Perspect. 2000 Aug;108(8):719–722. doi: 10.1289/ehp.108-1638287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchet J. P., Lauwerys R., Roels H., Bernard A., Bruaux P., Claeys F., Ducoffre G., de Plaen P., Staessen J., Amery A. Renal effects of cadmium body burden of the general population. Lancet. 1990 Sep 22;336(8717):699–702. doi: 10.1016/0140-6736(90)92201-r. [DOI] [PubMed] [Google Scholar]
  5. Bárány Ebba, Bergdahl Ingvar A., Bratteby Lars-Eric, Lundh Thomas, Samuelson Gösta, Schütz Andrejs, Skerfving Staffan, Oskarsson Agneta. Trace element levels in whole blood and serum from Swedish adolescents. Sci Total Environ. 2002 Mar 8;286(1-3):129–141. doi: 10.1016/s0048-9697(01)00970-6. [DOI] [PubMed] [Google Scholar]
  6. Chan H. M., Kim C., Leggee D. Cadmium in caribou (Rangifer tarandus) kidneys: speciation, effects of preparation and toxicokinetics. Food Addit Contam. 2001 Jul;18(7):607–614. doi: 10.1080/02652030120871. [DOI] [PubMed] [Google Scholar]
  7. Choudhury H., Harvey T., Thayer W. C., Lockwood T. F., Stiteler W. M., Goodrum P. E., Hassett J. M., Diamond G. L. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure--biokinetics model. J Toxicol Environ Health A. 2001 Jul 6;63(5):321–350. doi: 10.1080/15287390152103643. [DOI] [PubMed] [Google Scholar]
  8. Flanagan P. R., McLellan J. S., Haist J., Cherian G., Chamberlain M. J., Valberg L. S. Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology. 1978 May;74(5 Pt 1):841–846. [PubMed] [Google Scholar]
  9. Grawé K. P., Thierfelder T., Jorhem L., Oskarsson A. Cadmium levels in kidneys from Swedish pigs in relation to environmental factors--temporal and spatial trends. Sci Total Environ. 1997 Dec 3;208(1-2):111–122. doi: 10.1016/s0048-9697(97)00280-5. [DOI] [PubMed] [Google Scholar]
  10. Hellström L., Elinder C. G., Dahlberg B., Lundberg M., Järup L., Persson B., Axelson O. Cadmium exposure and end-stage renal disease. Am J Kidney Dis. 2001 Nov;38(5):1001–1008. doi: 10.1053/ajkd.2001.28589. [DOI] [PubMed] [Google Scholar]
  11. Hoffmann K., Krause C., Seifert B. The German Environmental Survey 1990/92 (GerES II): primary predictors of blood cadmium levels in adults. Arch Environ Health. 2001 Jul-Aug;56(4):374–379. doi: 10.1080/00039890109604471. [DOI] [PubMed] [Google Scholar]
  12. Hultberg B., Wieslander J. Urinary excretion of beta-hexosaminidase in patients with vesico-ureteric reflux. Acta Med Scand. 1982;211(4):257–259. doi: 10.1111/j.0954-6820.1982.tb01940.x. [DOI] [PubMed] [Google Scholar]
  13. Jorhem L., Engman J., Sundström B., Thim A. M. Trace elements in crayfish: regional differences and changes induced by cooking. Arch Environ Contam Toxicol. 1994 Feb;26(2):137–142. doi: 10.1007/BF00224796. [DOI] [PubMed] [Google Scholar]
  14. Järup L., Hellström L., Alfvén T., Carlsson M. D., Grubb A., Persson B., Pettersson C., Spång G., Schütz A., Elinder C. G. Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med. 2000 Oct;57(10):668–672. doi: 10.1136/oem.57.10.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim C., Chan H. M., Receveur O. Risk assessment of cadmium exposure in Fort Resolution, Northwest Territories, Canada. Food Addit Contam. 1998 Apr;15(3):307–317. doi: 10.1080/02652039809374646. [DOI] [PubMed] [Google Scholar]
  16. Lind Y., Engman J., Jorhem L., Glynn A. W. Accumulation of cadmium from wheat bran, sugar-beet fibre, carrots and cadmium chloride in the liver and kidneys of mice. Br J Nutr. 1998 Aug;80(2):205–211. [PubMed] [Google Scholar]
  17. Lind Y., Wicklund Glynn A., Engman J., Jorhem L. Bioavailability of cadmium from crab hepatopancreas and mushroom in relation to inorganic cadmium: a 9-week feeding study in mice. Food Chem Toxicol. 1995 Aug;33(8):667–673. doi: 10.1016/0278-6915(95)00036-2. [DOI] [PubMed] [Google Scholar]
  18. Lindén A., Andersson K., Oskarsson A. Cadmium in organic and conventional pig production. Arch Environ Contam Toxicol. 2001 Apr;40(3):425–431. doi: 10.1007/s002440010193. [DOI] [PubMed] [Google Scholar]
  19. Lindén A., Olsson I. M., Oskarsson A. Cadmium levels in feed components and kidneys of growing/finishing pigs. J AOAC Int. 1999 Nov-Dec;82(6):1288–1297. [PubMed] [Google Scholar]
  20. Müller M., Anke M., Hartmann E., Illing-Günther H. Oral cadmium exposure of adults in Germany. 1: Cadmium content of foodstuffs and beverages. Food Addit Contam. 1996 Apr;13(3):359–378. doi: 10.1080/02652039609374418. [DOI] [PubMed] [Google Scholar]
  21. Nortier J., Bernard A., Roels H., Deschodt-Lanckman M., Gueuning C., Lauwerys R. Urinary neutral endopeptidase in workers exposed to cadmium: interaction with cigarette smoking. Occup Environ Med. 1997 Jun;54(6):432–436. doi: 10.1136/oem.54.6.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olsson I. M., Oskarsson A. Sampling of kidneys from cattle and pigs for cadmium analysis. Analyst. 2001 Jan;126(1):114–120. doi: 10.1039/b005097k. [DOI] [PubMed] [Google Scholar]
  23. Reeves P. G., Vanderpool R. A. Cadmium burden of men and women who report regular consumption of confectionery sunflower kernels containing a natural abundance of cadmium. Environ Health Perspect. 1997 Oct;105(10):1098–1104. doi: 10.1289/ehp.971051098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sartor F. A., Rondia D. J., Claeys F. D., Staessen J. A., Lauwerys R. R., Bernard A. M., Buchet J. P., Roels H. A., Bruaux P. J., Ducoffre G. M. Impact of environmental cadmium pollution on cadmium exposure and body burden. Arch Environ Health. 1992 Sep-Oct;47(5):347–353. doi: 10.1080/00039896.1992.9938373. [DOI] [PubMed] [Google Scholar]
  25. Shimbo S., Zhang Z. W., Moon C. S., Watanabe T., Nakatsuka H., Matsuda-Inoguchi N., Higashikawa K., Ikeda M. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int Arch Occup Environ Health. 2000 Apr;73(3):163–170. doi: 10.1007/s004200050023. [DOI] [PubMed] [Google Scholar]
  26. Skerfving S., Bencko V., Vahter M., Schütz A., Gerhardsson L. Environmental health in the Baltic region--toxic metals. Scand J Work Environ Health. 1999;25 (Suppl 3):40–64. [PubMed] [Google Scholar]
  27. Staessen J. A., Lauwerys R. R., Ide G., Roels H. A., Vyncke G., Amery A. Renal function and historical environmental cadmium pollution from zinc smelters. Lancet. 1994 Jun 18;343(8912):1523–1527. doi: 10.1016/s0140-6736(94)92936-x. [DOI] [PubMed] [Google Scholar]
  28. Watanabe T., Zhang Z. W., Moon C. S., Shimbo S., Nakatsuka H., Matsuda-Inoguchi N., Higashikawa K., Ikeda M. Cadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981. Int Arch Occup Environ Health. 2000 Jan;73(1):26–34. doi: 10.1007/pl00007934. [DOI] [PubMed] [Google Scholar]
  29. Welinder H., Skerfving S., Henriksen O. Cadmium metabolism in man. Br J Ind Med. 1977 Aug;34(3):221–228. doi: 10.1136/oem.34.3.221. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES