Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(12):1225–1232. doi: 10.1289/ehp.021101225

Expression of hsp 27, hsp 60, hsc 70, and hsp 70 stress response genes in cultured human urothelial cells (UROtsa) exposed to lethal and sublethal concentrations of sodium arsenite.

Michael R Rossi 1, Seema Somji 1, Scott H Garrett 1, Mary Ann Sens 1, Joginder Nath 1, Donald A Sens 1
PMCID: PMC1241110  PMID: 12460802

Abstract

The stress response is one mechanism that the bladder urothelium could potentially employ to protect itself from cellular damage after exposure to arsenic and, in so doing, influence the shape of the dose-response curve at low concentrations of exposure to this environmental pollutant. In the present study, we used the cultured human urothelial cell line UROtsa, a model of human urothelium, to determine the expression of heat shock proteins hsp 27, hsp 60, hsc 70, and hsp 70 after acute and extended exposure of the cells to lethal and sublethal levels of sodium arsenite (NaAsO2). Acute exposure was modeled by exposing confluent cultures of UROtsa cells to 100 micro M NaAsO2 for 4 hr followed by a 48-hr recovery period. Extended exposure was modeled by exposing confluent UROtsa cells to 1, 4, and 8 micro M NaAsO2 for 16 days, with the highest concentration producing cell death by 4 days of exposure. The expression of hsp 27, hsp 60, hsc 70, and hsp 70 mRNA and protein was determined by reverse-transcription polymerase chain reaction and Western analysis. Cell viability was determined by the MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The results demonstrated that the expression of hsp 27, hsp 60, and hsc 70 mRNA and protein were not consistently increased by either acute or extended exposure to NaAsO2. In contrast, hsp 70 expression was induced by NaAsO2 after both acute and extended exposure. The degree and duration of the induction of the hsp 70 protein in the extended time course of exposure to NaAsO2 correlated directly with UROtsa cell cytotoxicity. The substantial level of basal expression of hsp 27, hsp 60, and hsc 70 shown previously in human bladder urothelium, coupled with the inducible expression of hsp 70, could provide the human urothelium with a mechanism to withstand and recover from a low level of arsenite exposure.

Full Text

The Full Text of this article is available as a PDF (942.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aufricht C., Ardito T., Thulin G., Kashgarian M., Siegel N. J., Van Why S. K. Heat-shock protein 25 induction and redistribution during actin reorganization after renal ischemia. Am J Physiol. 1998 Jan;274(1 Pt 2):F215–F222. doi: 10.1152/ajprenal.1998.274.1.F215. [DOI] [PubMed] [Google Scholar]
  2. Bernstam L., Nriagu J. Molecular aspects of arsenic stress. J Toxicol Environ Health B Crit Rev. 2000 Oct-Dec;3(4):293–322. doi: 10.1080/109374000436355. [DOI] [PubMed] [Google Scholar]
  3. Bukau B., Horwich A. L. The Hsp70 and Hsp60 chaperone machines. Cell. 1998 Feb 6;92(3):351–366. doi: 10.1016/s0092-8674(00)80928-9. [DOI] [PubMed] [Google Scholar]
  4. Chiou H. Y., Hsueh Y. M., Liaw K. F., Horng S. F., Chiang M. H., Pu Y. S., Lin J. S., Huang C. H., Chen C. J. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 1995 Mar 15;55(6):1296–1300. [PubMed] [Google Scholar]
  5. Ciocca D. R., Oesterreich S., Chamness G. C., McGuire W. L., Fuqua S. A. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst. 1993 Oct 6;85(19):1558–1570. doi: 10.1093/jnci/85.19.1558. [DOI] [PubMed] [Google Scholar]
  6. Clark J. I., Muchowski P. J. Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol. 2000 Feb;10(1):52–59. doi: 10.1016/s0959-440x(99)00048-2. [DOI] [PubMed] [Google Scholar]
  7. Craig E. A., Weissman J. S., Horwich A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. doi: 10.1016/0092-8674(94)90416-2. [DOI] [PubMed] [Google Scholar]
  8. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  9. Garrett S. H., Somji S., Todd J. H., Sens D. A. Exposure of human proximal tubule cells to cd2+, zn2+, and Cu2+ induces metallothionein protein accumulation but not metallothionein isoform 2 mRNA. Environ Health Perspect. 1998 Sep;106(9):587–595. doi: 10.1289/ehp.98106587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Georgopoulos C., Welch W. J. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–634. doi: 10.1146/annurev.cb.09.110193.003125. [DOI] [PubMed] [Google Scholar]
  11. Hopenhayn-Rich C., Biggs M. L., Fuchs A., Bergoglio R., Tello E. E., Nicolli H., Smith A. H. Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology. 1996 Mar;7(2):117–124. doi: 10.1097/00001648-199603000-00003. [DOI] [PubMed] [Google Scholar]
  12. Jager J. W., Ostrosky-Wegman P. Arsenic: a paradoxical human carcinogen. Mutat Res. 1997 Jun;386(3):181–184. doi: 10.1016/s1383-5742(97)00002-1. [DOI] [PubMed] [Google Scholar]
  13. Karagas M. R., Tosteson T. D., Blum J., Morris J. S., Baron J. A., Klaue B. Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environ Health Perspect. 1998 Aug;106 (Suppl 4):1047–1050. doi: 10.1289/ehp.98106s41047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim D., Somji S., Garrett S. H., Sens M. A., Shukla D., Sens D. A. Expression of hsp 27, hsp 60, hsc 70, and hsp 70 by immortalized human proximal tubule cells (HK-2) following exposure to heat shock, sodium arsenite, or cadmium chloride. J Toxicol Environ Health A. 2001 Aug 10;63(7):475–493. doi: 10.1080/15287390152410129. [DOI] [PubMed] [Google Scholar]
  15. Kitchin K. T. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 2001 May 1;172(3):249–261. doi: 10.1006/taap.2001.9157. [DOI] [PubMed] [Google Scholar]
  16. Macario A. J. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res. 1995;25(2):59–70. doi: 10.1007/BF02592359. [DOI] [PubMed] [Google Scholar]
  17. Petzoldt J. L., Leigh I. M., Duffy P. G., Masters J. R. Culture and characterisation of human urothelium in vivo and in vitro. Urol Res. 1994;22(2):67–74. doi: 10.1007/BF00310994. [DOI] [PubMed] [Google Scholar]
  18. Petzoldt J. L., Leigh I. M., Duffy P. G., Sexton C., Masters J. R. Immortalisation of human urothelial cells. Urol Res. 1995;23(6):377–380. doi: 10.1007/BF00698738. [DOI] [PubMed] [Google Scholar]
  19. Rossi M. R., Masters J. R., Park S., Todd J. H., Garrett S. H., Sens M. A., Somji S., Nath J., Sens D. A. The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect. 2001 Aug;109(8):801–808. doi: 10.1289/ehp.01109801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlesinger M. J. How the cell copes with stress and the function of heat shock proteins. Pediatr Res. 1994 Jul;36(1 Pt 1):1–6. doi: 10.1203/00006450-199407001-00001. [DOI] [PubMed] [Google Scholar]
  21. Schober A., Burger-Kentischer A., Müller E., Beck F. X. Effect of ischemia on localization of heat shock protein 25 in kidney. Kidney Int Suppl. 1998 Sep;67:S174–S176. doi: 10.1046/j.1523-1755.1998.06738.x. [DOI] [PubMed] [Google Scholar]
  22. Schober A., Müller E., Thurau K., Beck F. X. The response of heat shock proteins 25 and 72 to ischaemia in different kidney zones. Pflugers Arch. 1997 Jul;434(3):292–299. doi: 10.1007/s004240050399. [DOI] [PubMed] [Google Scholar]
  23. Smith A. H., Goycolea M., Haque R., Biggs M. L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol. 1998 Apr 1;147(7):660–669. doi: 10.1093/oxfordjournals.aje.a009507. [DOI] [PubMed] [Google Scholar]
  24. Somji S., Sens D. A., Garrett S. H., Sens M. A., Todd J. H. Heat shock protein 27 expression in human proximal tubule cells exposed to lethal and sublethal concentrations of CdCl2. Environ Health Perspect. 1999 Jul;107(7):545–552. doi: 10.1289/ehp.99107545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Somji S., Todd J. H., Sens M. A., Garrett S. H., Sens D. A. Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl(2). Environ Health Perspect. 1999 Nov;107(11):887–893. doi: 10.1289/ehp.99107887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinmaus C., Moore L., Hopenhayn-Rich C., Biggs M. L., Smith A. H. Arsenic in drinking water and bladder cancer. Cancer Invest. 2000;18(2):174–182. doi: 10.3109/07357900009038249. [DOI] [PubMed] [Google Scholar]
  27. Tsuda T., Babazono A., Yamamoto E., Kurumatani N., Mino Y., Ogawa T., Kishi Y., Aoyama H. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol. 1995 Feb 1;141(3):198–209. doi: 10.1093/oxfordjournals.aje.a117421. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES