Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Feb;110(Suppl 1):3–9. doi: 10.1289/ehp.02110s113

Proteomic approaches to characterize protein modifications: new tools to study the effects of environmental exposures.

Daniel C Liebler 1
PMCID: PMC1241143  PMID: 11834459

Abstract

Proteomics is the study of proteomes, which are the collections of proteins expressed in cells. Whereas genomes are essentially invariant in different cells in an organism, proteomes vary from cell to cell, with time and as a function of environmental stimuli and stress. The integration of new mass spectrometry (MS) methods, data analysis algorithms, and information from databases of protein and gene sequences has enabled the characterization of proteomes. Many environmental agents directly or indirectly generate reactive electrophiles that covalently modify proteins. Although considerable evidence supports a key role for protein adducts in adverse effects of chemicals, limitations in analytical technology have slowed progress in this area. New applications of liquid chromatography-tandem mass spectrometry (LC-MS-MS) now offer the potential to identify protein targets of reactive electrophiles and to map adducts at the level of amino acid sequence. Use of the data-analysis tools Sequest and SALSA (Scoring Algorithm for Spectral Analysis) together with LC-MS-MS analyses of protein digests enables the identification of modified forms of proteins in a sample. These approaches can map adducts to specific amino acids in protein targets and are being adapted to searches for protein adducts in complex proteomes. These tools will facilitate the identification of new biomarkers of chemical exposure and studies of mechanisms by which protein modifications contribute to the adverse effects of environmental exposures.

Full Text

The Full Text of this article is available as a PDF (557.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler V., Yin Z., Fuchs S. Y., Benezra M., Rosario L., Tew K. D., Pincus M. R., Sardana M., Henderson C. J., Wolf C. R. Regulation of JNK signaling by GSTp. EMBO J. 1999 Mar 1;18(5):1321–1334. doi: 10.1093/emboj/18.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolgar M. S., Yang C. Y., Gaskell S. J. First direct evidence for lipid/protein conjugation in oxidized human low density lipoprotein. J Biol Chem. 1996 Nov 8;271(45):27999–28001. doi: 10.1074/jbc.271.45.27999. [DOI] [PubMed] [Google Scholar]
  3. Bruschi S. A., West K. A., Crabb J. W., Gupta R. S., Stevens J. L. Mitochondrial HSP60 (P1 protein) and a HSP70-like protein (mortalin) are major targets for modification during S-(1,1,2,2-tetrafluoroethyl)-L-cysteine-induced nephrotoxicity. J Biol Chem. 1993 Nov 5;268(31):23157–23161. [PubMed] [Google Scholar]
  4. Buschmann T., Yin Z., Bhoumik A., Ronai Z. Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death. J Biol Chem. 2000 Jun 2;275(22):16590–16596. doi: 10.1074/jbc.M910045199. [DOI] [PubMed] [Google Scholar]
  5. Cho S. G., Lee Y. H., Park H. S., Ryoo K., Kang K. W., Park J., Eom S. J., Kim M. J., Chang T. S., Choi S. Y. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem. 2001 Jan 18;276(16):12749–12755. doi: 10.1074/jbc.M005561200. [DOI] [PubMed] [Google Scholar]
  6. Cohen S. D., Pumford N. R., Khairallah E. A., Boekelheide K., Pohl L. R., Amouzadeh H. R., Hinson J. A. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol. 1997 Mar;143(1):1–12. doi: 10.1006/taap.1996.8074. [DOI] [PubMed] [Google Scholar]
  7. Ding A., Ojingwa J. C., McDonagh A. F., Burlingame A. L., Benet L. Z. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3797–3801. doi: 10.1073/pnas.90.9.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ding A., Zia-Amirhosseini P., McDonagh A. F., Burlingame A. L., Benet L. Z. Reactivity of tolmetin glucuronide with human serum albumin. Identification of binding sites and mechanisms of reaction by tandem mass spectrometry. Drug Metab Dispos. 1995 Mar;23(3):369–376. [PubMed] [Google Scholar]
  9. Ducret A., Van Oostveen I., Eng J. K., Yates J. R., 3rd, Aebersold R. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci. 1998 Mar;7(3):706–719. doi: 10.1002/pro.5560070320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erve J. C., Barofsky E., Barofsky D. F., Deinzer M. L., Reed D. J. Alkylation of Escherichia coli thioredoxin by S-(2-chloroethyl)glutathione and identification of the adduct on the active site cysteine-32 by mass spectrometry. Chem Res Toxicol. 1995 Oct-Nov;8(7):934–941. doi: 10.1021/tx00049a006. [DOI] [PubMed] [Google Scholar]
  11. Erve J. C., Deinzer M. L., Reed D. J. Alkylation of oxytocin by S-(2-chloroethyl)glutathione and characterization of adducts by tandem mass spectrometry and Edman degradation. Chem Res Toxicol. 1995 Apr-May;8(3):414–421. doi: 10.1021/tx00045a013. [DOI] [PubMed] [Google Scholar]
  12. Farmer P. B. Studies using specific biomarkers for human exposure assessment to exogenous and endogenous chemical agents. Mutat Res. 1999 Jul 16;428(1-2):69–81. doi: 10.1016/s1383-5742(99)00033-2. [DOI] [PubMed] [Google Scholar]
  13. Fenyö D. Identifying the proteome: software tools. Curr Opin Biotechnol. 2000 Aug;11(4):391–395. doi: 10.1016/s0958-1669(00)00115-4. [DOI] [PubMed] [Google Scholar]
  14. Gallis B., Corthals G. L., Goodlett D. R., Ueba H., Kim F., Presnell S. R., Figeys D., Harrison D. G., Berk B. C., Aebersold R. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem. 1999 Oct 15;274(42):30101–30108. doi: 10.1074/jbc.274.42.30101. [DOI] [PubMed] [Google Scholar]
  15. Guengerich F. P., Liebler D. C. Enzymatic activation of chemicals to toxic metabolites. Crit Rev Toxicol. 1985;14(3):259–307. doi: 10.3109/10408448509037460. [DOI] [PubMed] [Google Scholar]
  16. Hansen B. T., Jones J. A., Mason D. E., Liebler D. C. SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. Anal Chem. 2001 Apr 15;73(8):1676–1683. doi: 10.1021/ac001172h. [DOI] [PubMed] [Google Scholar]
  17. Hargus S. J., Martin B. M., George J. W., Pohl L. R. Covalent modification of rat liver dipeptidyl peptidase IV (CD26) by the nonsteroidal anti-inflammatory drug diclofenac. Chem Res Toxicol. 1995 Dec;8(8):993–996. doi: 10.1021/tx00050a001. [DOI] [PubMed] [Google Scholar]
  18. Harriman S. P., Hill J. A., Tannenbaum S. R., Wishnok J. S. Detection and identification of carcinogen-peptide adducts by nanoelectrospray tandem mass spectrometry. J Am Soc Mass Spectrom. 1998 Mar;9(3):202–207. doi: 10.1016/S1044-0305(97)00252-3. [DOI] [PubMed] [Google Scholar]
  19. Hinson J. A., Pumford N. R., Nelson S. D. The role of metabolic activation in drug toxicity. Drug Metab Rev. 1994;26(1-2):395–412. doi: 10.3109/03602539409029805. [DOI] [PubMed] [Google Scholar]
  20. Hinson J. A., Roberts D. W. Role of covalent and noncovalent interactions in cell toxicity: effects on proteins. Annu Rev Pharmacol Toxicol. 1992;32:471–510. doi: 10.1146/annurev.pa.32.040192.002351. [DOI] [PubMed] [Google Scholar]
  21. Holme J. A., Hongslo J. K., Bjørge C., Nelson S. D. Comparative cytotoxic effects of acetaminophen (N-acetyl-p-aminophenol), a non-hepatotoxic regioisomer acetyl-m-aminophenol and their postulated reactive hydroquinone and quinone metabolites in monolayer cultures of mouse hepatocytes. Biochem Pharmacol. 1991 Aug 8;42(5):1137–1142. doi: 10.1016/0006-2952(91)90299-k. [DOI] [PubMed] [Google Scholar]
  22. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiao K., Mandapati S., Skipper P. L., Tannenbaum S. R., Wishnok J. S. Site-selective nitration of tyrosine in human serum albumin by peroxynitrite. Anal Biochem. 2001 Jun 1;293(1):43–52. doi: 10.1006/abio.2001.5118. [DOI] [PubMed] [Google Scholar]
  24. Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973 Oct;187(1):195–202. [PubMed] [Google Scholar]
  25. Jollow D. J., Mitchell J. R., Zampaglione N., Gillette J. R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–169. doi: 10.1159/000136485. [DOI] [PubMed] [Google Scholar]
  26. Jones J. A., Liebler D. C. Tandem MS analysis of model peptide adducts from reactive metabolites of the hepatotoxin 1,1-dichloroethylene. Chem Res Toxicol. 2000 Dec;13(12):1302–1312. doi: 10.1021/tx000148w. [DOI] [PubMed] [Google Scholar]
  27. Kaufman R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999 May 15;13(10):1211–1233. doi: 10.1101/gad.13.10.1211. [DOI] [PubMed] [Google Scholar]
  28. Kaur S., Hollander D., Haas R., Burlingame A. L. Characterization of structural xenobiotic modifications in proteins by high sensitivity tandem mass spectrometry. Human hemoglobin treated in vitro with styrene 7,8-oxide. J Biol Chem. 1989 Oct 15;264(29):16981–16984. [PubMed] [Google Scholar]
  29. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  30. Lau S. S., Monks T. J., Gillette J. R. Multiple reactive metabolites derived from bromobenzene. Drug Metab Dispos. 1984 May-Jun;12(3):291–296. [PubMed] [Google Scholar]
  31. Liebler D. C., Latwesen D. G., Reeder T. C. S-(2-chloroacetyl)glutathione, a reactive glutathione thiol ester and a putative metabolite of 1,1-dichloroethylene. Biochemistry. 1988 May 17;27(10):3652–3657. doi: 10.1021/bi00410a020. [DOI] [PubMed] [Google Scholar]
  32. Link A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., Garvik B. M., Yates J. R., 3rd Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999 Jul;17(7):676–682. doi: 10.1038/10890. [DOI] [PubMed] [Google Scholar]
  33. Liu H., Bowes R. C., 3rd, van de Water B., Sillence C., Nagelkerke J. F., Stevens J. L. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem. 1997 Aug 29;272(35):21751–21759. doi: 10.1074/jbc.272.35.21751. [DOI] [PubMed] [Google Scholar]
  34. Mason D. E., Liebler D. C. Characterization of benzoquinone-peptide adducts by electrospray mass spectrometry. Chem Res Toxicol. 2000 Oct;13(10):976–982. doi: 10.1021/tx0000670. [DOI] [PubMed] [Google Scholar]
  35. Miller E. C., Miller J. A. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer. 1981 May 15;47(10):2327–2345. doi: 10.1002/1097-0142(19810515)47:10<2327::aid-cncr2820471003>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  36. Myers T. G., Dietz E. C., Anderson N. L., Khairallah E. A., Cohen S. D., Nelson S. D. A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3'-hydroxyacetanilide. Chem Res Toxicol. 1995 Apr-May;8(3):403–413. doi: 10.1021/tx00045a012. [DOI] [PubMed] [Google Scholar]
  37. Nelson S. D., Pearson P. G. Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol. 1990;30:169–195. doi: 10.1146/annurev.pa.30.040190.001125. [DOI] [PubMed] [Google Scholar]
  38. Pandey A., Mann M. Proteomics to study genes and genomes. Nature. 2000 Jun 15;405(6788):837–846. doi: 10.1038/35015709. [DOI] [PubMed] [Google Scholar]
  39. Pearson P. G., Slatter J. G., Rashed M. S., Han D. H., Baillie T. A. Carbamoylation of peptides and proteins in vitro by S-(N-methylcarbamoyl)glutathione and S-(N-methylcarbamoyl)cysteine, two electrophilic S-linked conjugates of methyl isocyanate. Chem Res Toxicol. 1991 Jul-Aug;4(4):436–444. doi: 10.1021/tx00022a007. [DOI] [PubMed] [Google Scholar]
  40. Posewitz M. C., Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999 Jul 15;71(14):2883–2892. doi: 10.1021/ac981409y. [DOI] [PubMed] [Google Scholar]
  41. Potter W. Z., Davis D. C., Mitchell J. R., Jollow D. J., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther. 1973 Oct;187(1):203–210. [PubMed] [Google Scholar]
  42. Potter W. Z., Thorgeirsson S. S., Jollow D. J., Mitchell J. R. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology. 1974;12(3):129–143. doi: 10.1159/000136531. [DOI] [PubMed] [Google Scholar]
  43. Pumford N. R., Halmes N. C., Hinson J. A. Covalent binding of xenobiotics to specific proteins in the liver. Drug Metab Rev. 1997 Feb-May;29(1-2):39–57. doi: 10.3109/03602539709037572. [DOI] [PubMed] [Google Scholar]
  44. Qiu Y., Benet L. Z., Burlingame A. L. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem. 1998 Jul 10;273(28):17940–17953. doi: 10.1074/jbc.273.28.17940. [DOI] [PubMed] [Google Scholar]
  45. Qiu Y., Burlingame A. L., Benet L. Z. Mechanisms for covalent binding of benoxaprofen glucuronide to human serum albumin. Studies By tandem mass spectrometry. Drug Metab Dispos. 1998 Mar;26(3):246–256. [PubMed] [Google Scholar]
  46. Rashed M. S., Myers T. G., Nelson S. D. Hepatic protein arylation, glutathione depletion, and metabolite profiles of acetaminophen and a non-hepatotoxic regioisomer, 3'-hydroxyacetanilide, in the mouse. Drug Metab Dispos. 1990 Sep-Oct;18(5):765–770. [PubMed] [Google Scholar]
  47. Rombach E. M., Hanzlik R. P. Detection of benzoquinone adducts to rat liver protein sulfhydryl groups using specific antibodies. Chem Res Toxicol. 1997 Dec;10(12):1407–1411. doi: 10.1021/tx970130u. [DOI] [PubMed] [Google Scholar]
  48. Rubin G. M., Yandell M. D., Wortman J. R., Gabor Miklos G. L., Nelson C. R., Hariharan I. K., Fortini M. E., Li P. W., Apweiler R., Fleischmann W. Comparative genomics of the eukaryotes. Science. 2000 Mar 24;287(5461):2204–2215. doi: 10.1126/science.287.5461.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998 May 1;17(9):2596–2606. doi: 10.1093/emboj/17.9.2596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Satoh H., Fukuda Y., Anderson D. K., Ferrans V. J., Gillette J. R., Pohl L. R. Immunological studies on the mechanism of halothane-induced hepatotoxicity: immunohistochemical evidence of trifluoroacetylated hepatocytes. J Pharmacol Exp Ther. 1985 Jun;233(3):857–862. [PubMed] [Google Scholar]
  51. Shen M. L., Johnson K. L., Mays D. C., Lipsky J. J., Naylor S. Identification of the protein-drug adduct formed between aldehyde dehydrogenase and S-methyl-N,N-diethylthiocarbamoyl sulfoxide by on-line proteolytic digestion high performance liquid chromatography electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(10):918–923. doi: 10.1002/(SICI)1097-0231(20000530)14:10<918::AID-RCM966>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  52. Shevchenko A., Loboda A., Shevchenko A., Ens W., Standing K. G. MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem. 2000 May 1;72(9):2132–2141. doi: 10.1021/ac9913659. [DOI] [PubMed] [Google Scholar]
  53. Skipper P. L., Peng X., Soohoo C. K., Tannenbaum S. R. Protein adducts as biomarkers of human carcinogen exposure. Drug Metab Rev. 1994;26(1-2):111–124. doi: 10.3109/03602539409029787. [DOI] [PubMed] [Google Scholar]
  54. Skipper P. L., Tannenbaum S. R. Protein adducts in the molecular dosimetry of chemical carcinogens. Carcinogenesis. 1990 Apr;11(4):507–518. doi: 10.1093/carcin/11.4.507. [DOI] [PubMed] [Google Scholar]
  55. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  56. Wang T., Arifoglu P., Ronai Z., Tew K. D. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001 Mar 9;276(24):20999–21003. doi: 10.1074/jbc.M101355200. [DOI] [PubMed] [Google Scholar]
  57. Washburn M. P., Wolters D., Yates J. R., 3rd Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001 Mar;19(3):242–247. doi: 10.1038/85686. [DOI] [PubMed] [Google Scholar]
  58. Yates J. R., 3rd, Eng J. K., McCormack A. L., Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995 Apr 15;67(8):1426–1436. doi: 10.1021/ac00104a020. [DOI] [PubMed] [Google Scholar]
  59. Yates J. R., 3rd Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998 Jan;33(1):1–19. doi: 10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  60. Yin Z., Ivanov V. N., Habelhah H., Tew K., Ronai Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000 Aug 1;60(15):4053–4057. [PubMed] [Google Scholar]
  61. Yu K., Chen Q., Liu H., Zhan Y., Stevens J. L. Signalling the molecular stress response to nephrotoxic and mutagenic cysteine conjugates: differential roles for protein synthesis and calcium in the induction of c-fos and c-myc mRNA in LLC-PK1 cells. J Cell Physiol. 1994 Nov;161(2):303–311. doi: 10.1002/jcp.1041610215. [DOI] [PubMed] [Google Scholar]
  62. Zia-Amirhosseini P., Ding A., Burlingame A. L., McDonagh A. F., Benet L. Z. Synthesis and mass-spectrometric characterization of human serum albumins modified by covalent binding of two non-steroidal anti-inflammatory drugs: tolmetin and zomepirac. Biochem J. 1995 Oct 15;311(Pt 2):431–435. doi: 10.1042/bj3110431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. de Carvalho M. G., McCormack A. L., Olson E., Ghomashchi F., Gelb M. H., Yates J. R., 3rd, Leslie C. C. Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. J Biol Chem. 1996 Mar 22;271(12):6987–6997. doi: 10.1074/jbc.271.12.6987. [DOI] [PubMed] [Google Scholar]
  64. van De Water B., Wang Y., Asmellash S., Liu H., Zhan Y., Miller E., Stevens J. L. Distinct endoplasmic reticulum signaling pathways regulate apoptotic and necrotic cell death following iodoacetamide treatment. Chem Res Toxicol. 1999 Oct;12(10):943–951. doi: 10.1021/tx990054q. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES