Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Feb;110(Suppl 1):75–87. doi: 10.1289/ehp.02110s175

Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products.

Yin-Tak Woo 1, David Lai 1, Jennifer L McLain 1, Mary Ko Manibusan 1, Vicki Dellarco 1
PMCID: PMC1241149  PMID: 11834465

Abstract

Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies.

Full Text

The Full Text of this article is available as a PDF (590.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abril N., Luque-Romero F. L., Prieto-Alamo M. J., Margison G. P., Pueyo C. ogt alkyltransferase enhances dibromoalkane mutagenicity in excision repair-deficient Escherichia coli K-12. Mol Carcinog. 1995 Feb;12(2):110–117. doi: 10.1002/mc.2940120208. [DOI] [PubMed] [Google Scholar]
  2. Ahmed A. E., Soliman S. A., Loh J. P., Hussein G. I. Studies on the mechanism of haloacetonitriles toxicity: inhibition of rat hepatic glutathione S-transferases in vitro. Toxicol Appl Pharmacol. 1989 Sep 1;100(2):271–279. doi: 10.1016/0041-008x(89)90313-x. [DOI] [PubMed] [Google Scholar]
  3. Ashby J., Tennant R. W. Prediction of rodent carcinogenicity for 44 chemicals: results. Mutagenesis. 1994 Jan;9(1):7–15. doi: 10.1093/mutage/9.1.7. [DOI] [PubMed] [Google Scholar]
  4. Boorman G. A. Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Health Perspect. 1999 Feb;107 (Suppl 1):207–217. doi: 10.1289/ehp.99107s1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bull R. J., Meier J. R., Robinson M., Ringhand H. P., Laurie R. D., Stober J. A. Evaluation of mutagenic and carcinogenic properties of brominated and chlorinated acetonitriles: by-products of chlorination. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 1):1065–1074. doi: 10.1016/0272-0590(85)90142-3. [DOI] [PubMed] [Google Scholar]
  6. Cantor K. P., Hoover R., Hartge P., Mason T. J., Silverman D. T., Altman R., Austin D. F., Child M. A., Key C. R., Marrett L. D. Bladder cancer, drinking water source, and tap water consumption: a case-control study. J Natl Cancer Inst. 1987 Dec;79(6):1269–1279. [PubMed] [Google Scholar]
  7. Cantor K. P., Lynch C. F., Hildesheim M. E., Dosemeci M., Lubin J., Alavanja M., Craun G. Drinking water source and chlorination byproducts. I. Risk of bladder cancer. Epidemiology. 1998 Jan;9(1):21–28. [PubMed] [Google Scholar]
  8. Combes R. D. The use of structure-activity relationships and markers of cell toxicity to detect non-genotoxic carcinogens. Toxicol In Vitro. 2000 Aug;14(4):387–399. doi: 10.1016/s0887-2333(00)00026-6. [DOI] [PubMed] [Google Scholar]
  9. Cunningham A. R., Rosenkranz H. S., Klopman G. Structural analysis of a group of phytoestrogens for the presence of a 2-D geometric descriptor associated with non-genotoxic carcinogens and some estrogens. Proc Soc Exp Biol Med. 1998 Mar;217(3):288–292. doi: 10.3181/00379727-217-44234. [DOI] [PubMed] [Google Scholar]
  10. Daniel F. B., Schenck K. M., Mattox J. K., Lin E. L., Haas D. L., Pereira M. A. Genotoxic properties of haloacetonitriles: drinking water by-products of chlorine disinfection. Fundam Appl Toxicol. 1986 Apr;6(3):447–453. doi: 10.1016/0272-0590(86)90218-6. [DOI] [PubMed] [Google Scholar]
  11. DeAngelo A. B., Daniel F. B., Most B. M., Olson G. R. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat. Toxicology. 1996 Dec 18;114(3):207–221. doi: 10.1016/s0300-483x(96)03510-x. [DOI] [PubMed] [Google Scholar]
  12. DeAngelo A. B., George M. H., House D. E. Hepatocarcinogenicity in the male B6C3F1 mouse following a lifetime exposure to dichloroacetic acid in the drinking water: dose-response determination and modes of action. J Toxicol Environ Health A. 1999 Dec 24;58(8):485–507. doi: 10.1080/009841099157115. [DOI] [PubMed] [Google Scholar]
  13. DeMarini D. M., Shelton M. L., Warren S. H., Ross T. M., Shim J. Y., Richard A. M., Pegram R. A. Glutathione S-transferase-mediated induction of GC-->AT transitions by halomethanes in Salmonella. Environ Mol Mutagen. 1997;30(4):440–447. [PubMed] [Google Scholar]
  14. Doyle T. J., Zheng W., Cerhan J. R., Hong C. P., Sellers T. A., Kushi L. H., Folsom A. R. The association of drinking water source and chlorination by-products with cancer incidence among postmenopausal women in Iowa: a prospective cohort study. Am J Public Health. 1997 Jul;87(7):1168–1176. doi: 10.2105/ajph.87.7.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fekadu K., Parzefall W., Kronberg L., Franzen R., Schulte-Hermann R., Knasmüller S. Induction of genotoxic effects by chlorohydroxyfuranones, byproducts of water disinfection, in E. coli K-12 cells recovered from various organs of mice. Environ Mol Mutagen. 1994;24(4):317–324. doi: 10.1002/em.2850240409. [DOI] [PubMed] [Google Scholar]
  16. Freedman D. M., Cantor K. P., Lee N. L., Chen L. S., Lei H. H., Ruhl C. E., Wang S. S. Bladder cancer and drinking water: a population-based case-control study in Washington County, Maryland (United States). Cancer Causes Control. 1997 Sep;8(5):738–744. doi: 10.1023/a:1018431421567. [DOI] [PubMed] [Google Scholar]
  17. Heck H. D., Tyl R. W. The induction of bladder stones by terephthalic acid, dimethyl terephthalate, and melamine (2,4,6-triamino-s-triazine) and its relevance to risk assessment. Regul Toxicol Pharmacol. 1985 Sep;5(3):294–313. doi: 10.1016/0273-2300(85)90044-3. [DOI] [PubMed] [Google Scholar]
  18. Hildesheim M. E., Cantor K. P., Lynch C. F., Dosemeci M., Lubin J., Alavanja M., Craun G. Drinking water source and chlorination byproducts. II. Risk of colon and rectal cancers. Epidemiology. 1998 Jan;9(1):29–35. [PubMed] [Google Scholar]
  19. Jansson K., Hyttinen J. M., Niittykoski M., Mäki-Paakkanen J. Mutagenicity in vitro of 3,4-dichloro-5-hydroxy-2(5H)-furanone (mucochloric acid), a chlorine disinfection by-product in drinking water. Environ Mol Mutagen. 1995;25(4):284–287. doi: 10.1002/em.2850250404. [DOI] [PubMed] [Google Scholar]
  20. King W. D., Marrett L. D. Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada). Cancer Causes Control. 1996 Nov;7(6):596–604. doi: 10.1007/BF00051702. [DOI] [PubMed] [Google Scholar]
  21. Komulainen H., Kosma V. M., Vaittinen S. L., Vartiainen T., Kaliste-Korhonen E., Lötjönen S., Tuominen R. K., Tuomisto J. Carcinogenicity of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in the rat. J Natl Cancer Inst. 1997 Jun 18;89(12):848–856. doi: 10.1093/jnci/89.12.848. [DOI] [PubMed] [Google Scholar]
  22. Kronberg L., Vartiainen T. Ames mutagenicity and concentration of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and of its geometric isomer E-2-chloro-3-(dichloromethyl)-4-oxo-butenoic acid in chlorine-treated tap waters. Mutat Res. 1988 Oct;206(2):177–182. doi: 10.1016/0165-1218(88)90158-9. [DOI] [PubMed] [Google Scholar]
  23. LaLonde R. T., Cook G. P., Perakyla H., Dence C. W., Babish J. G. Salmonella typhimurium (TA100) mutagenicity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and its open- and closed-ring analogs. Environ Mol Mutagen. 1991;17(1):40–48. doi: 10.1002/em.2850170107. [DOI] [PubMed] [Google Scholar]
  24. LaLonde R. T., Cook G. P., Perakyla H., Dence C. W. Effect on mutagenicity of the stepwise removal of hydroxyl group and chlorine atoms from 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: 13C NMR chemical shifts as determinants of mutagenicity. Chem Res Toxicol. 1991 Jan-Feb;4(1):35–40. doi: 10.1021/tx00019a005. [DOI] [PubMed] [Google Scholar]
  25. Le Curieux F., Giller S., Gauthier L., Erb F., Marzin D. Study of the genotoxic activity of six halogenated acetonitriles, using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test. Mutat Res. 1995 Feb;341(4):289–302. doi: 10.1016/0165-1218(95)90100-0. [DOI] [PubMed] [Google Scholar]
  26. Le Curieux F., Marzin D., Erb F. Study of the genotoxic activity of five chlorinated propanones using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test. Mutat Res. 1994 Nov;341(1):1–15. doi: 10.1016/0165-1218(94)90019-1. [DOI] [PubMed] [Google Scholar]
  27. Le Curieux F., Marzin D., Erb F. Study of the genotoxic activity of five chlorinated propanones using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test. Mutat Res. 1994 Nov;341(1):1–15. doi: 10.1016/0165-1218(94)90019-1. [DOI] [PubMed] [Google Scholar]
  28. Leavitt S. A., DeAngelo A. B., George M. H., Ross J. A. Assessment of the mutagenicity of dichloroacetic acid in lacI transgenic B6C3F1 mouse liver. Carcinogenesis. 1997 Nov;18(11):2101–2106. doi: 10.1093/carcin/18.11.2101. [DOI] [PubMed] [Google Scholar]
  29. Lijinsky W., Kovatch R. M. Chronic toxicity study of cyclohexanone in rats and mice. J Natl Cancer Inst. 1986 Oct;77(4):941–949. [PubMed] [Google Scholar]
  30. McGeehin M. A., Reif J. S., Becher J. C., Mangione E. J. Case-control study of bladder cancer and water disinfection methods in Colorado. Am J Epidemiol. 1993 Oct 1;138(7):492–501. doi: 10.1093/oxfordjournals.aje.a116883. [DOI] [PubMed] [Google Scholar]
  31. Merrick B. A., Smallwood C. L., Meier J. R., McKean D. L., Kaylor W. H., Condie L. W. Chemical reactivity, cytotoxicity, and mutagenicity of chloropropanones. Toxicol Appl Pharmacol. 1987 Oct;91(1):46–54. doi: 10.1016/0041-008x(87)90192-x. [DOI] [PubMed] [Google Scholar]
  32. Merrick B. A., Smallwood C. L., Meier J. R., McKean D. L., Kaylor W. H., Condie L. W. Chemical reactivity, cytotoxicity, and mutagenicity of chloropropanones. Toxicol Appl Pharmacol. 1987 Oct;91(1):46–54. doi: 10.1016/0041-008x(87)90192-x. [DOI] [PubMed] [Google Scholar]
  33. Muller-Pillet V., Joyeux M., Ambroise D., Hartemann P. Genotoxic activity of five haloacetonitriles: comparative investigations in the single cell gel electrophoresis (comet) assay and the ames-fluctuation test. Environ Mol Mutagen. 2000;36(1):52–58. doi: 10.1002/1098-2280(2000)36:1<52::aid-em8>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  34. Nestmann E. R., Douglas G. R., Kowbel D. J., Harrington T. R. Solvent interactions with test compounds and recommendations for testing to avoid artifacts. Environ Mutagen. 1985;7(2):163–170. doi: 10.1002/em.2860070205. [DOI] [PubMed] [Google Scholar]
  35. Obe G., Beek B. Mutagenic activity of aldehydes. Drug Alcohol Depend. 1979 Jan-Mar;4(1-2):91–94. doi: 10.1016/0376-8716(79)90044-9. [DOI] [PubMed] [Google Scholar]
  36. Osterman-Golkar S., Pérez H. L., Csanády G. A., Kessler W., Filser J. G. Methods for biological monitoring of propylene oxide exposure in Fischer 344 rats. Toxicology. 1999 May 3;134(1):1–8. doi: 10.1016/s0300-483x(99)00014-1. [DOI] [PubMed] [Google Scholar]
  37. Pegram R. A., Andersen M. E., Warren S. H., Ross T. M., Claxton L. D. Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane off chloroform. Toxicol Appl Pharmacol. 1997 May;144(1):183–188. doi: 10.1006/taap.1997.8123. [DOI] [PubMed] [Google Scholar]
  38. Raj H. G., Santhanam K., Gupta R. P., Venkitasubramanian T. A. Oxidative metabolism of aflatoxin B1 by rat liver microsomes in vitro and its effect on lipid peroxidation. Res Commun Chem Pathol Pharmacol. 1974 Aug;8(4):703–706. [PubMed] [Google Scholar]
  39. Robinson M., Bull R. J., Olson G. R., Stober J. Carcinogenic activity associated with halogenated acetones and acroleins in the mouse skin assay. Cancer Lett. 1989 Dec;48(3):197–203. doi: 10.1016/0304-3835(89)90118-3. [DOI] [PubMed] [Google Scholar]
  40. Roldán-Arjona T., Pueyo C. Mutagenic and lethal effects of halogenated methanes in the Ara test of Salmonella typhimurium: quantitative relationship with chemical reactivity. Mutagenesis. 1993 Mar;8(2):127–131. doi: 10.1093/mutage/8.2.127. [DOI] [PubMed] [Google Scholar]
  41. Rosenkranz H. S., Cunningham A., Klopman G. Identification of a 2-D geometric descriptor associated with non-genotoxic carcinogens and some estrogens and antiestrogens. Mutagenesis. 1996 Jan;11(1):95–100. doi: 10.1093/mutage/11.1.95. [DOI] [PubMed] [Google Scholar]
  42. Schneider M., Quistad G. B., Casida J. E. Glutathione activation of chloropicrin in the Salmonella mutagenicity test. Mutat Res. 1999 Feb 19;439(2):233–238. doi: 10.1016/s1383-5718(98)00198-3. [DOI] [PubMed] [Google Scholar]
  43. Takeshita T., Yang X., Inoue Y., Sato S., Morimoto K. Relationship between alcohol drinking, ADH2 and ALDH2 genotypes, and risk for hepatocellular carcinoma in Japanese. Cancer Lett. 2000 Feb 28;149(1-2):69–76. doi: 10.1016/s0304-3835(99)00343-2. [DOI] [PubMed] [Google Scholar]
  44. Thier R., Pemble S. E., Kramer H., Taylor J. B., Guengerich F. P., Ketterer B. Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogenesis. 1996 Jan;17(1):163–166. doi: 10.1093/carcin/17.1.163. [DOI] [PubMed] [Google Scholar]
  45. Tuppurainen K., Ruuskanen J. Electronic eigenvalue (EEVA): a new QSAR/QSPR descriptor for electronic substituent effects based on molecular orbital energies. A QSAR approach to the Ah receptor binding affinity of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Chemosphere. 2000 Sep;41(6):843–848. doi: 10.1016/s0045-6535(99)00525-1. [DOI] [PubMed] [Google Scholar]
  46. Wiltse J., Dellarco V. L. U.S. Environmental Protection Agency guidelines for carcinogen risk assessment: past and future. Mutat Res. 1996 Sep;365(1-3):3–15. doi: 10.1016/s0165-1110(96)90009-3. [DOI] [PubMed] [Google Scholar]
  47. Woo Y. T., Lai D. Y., Argus M. F., Arcos J. C. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol Lett. 1995 Sep;79(1-3):219–228. doi: 10.1016/0378-4274(95)03373-s. [DOI] [PubMed] [Google Scholar]
  48. Yamashita M., Kinae N., Tomita I., Kimura I. Effects of pH and temperature on the degradation of chloroacetones that are mutagenic. Bull Environ Contam Toxicol. 1987 Sep;39(3):549–554. doi: 10.1007/BF01688323. [DOI] [PubMed] [Google Scholar]
  49. Yamashita M., Kinae N., Tomita I., Kimura I. Effects of pH and temperature on the degradation of chloroacetones that are mutagenic. Bull Environ Contam Toxicol. 1987 Sep;39(3):549–554. doi: 10.1007/BF01688323. [DOI] [PubMed] [Google Scholar]
  50. Yokoyama A., Muramatsu T., Omori T., Matsushita S., Yoshimizu H., Higuchi S., Yokoyama T., Maruyama K., Ishii H. Alcohol and aldehyde dehydrogenase gene polymorphisms influence susceptibility to esophageal cancer in Japanese alcoholics. Alcohol Clin Exp Res. 1999 Nov;23(11):1705–1710. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES