Abstract
Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle burden. Residual oil fly ash (ROFA) is remarkable in the capacity to provoke injury in experimental systems. The unique composition of this emission source particle makes it particularly useful as a surrogate for ambient air PM in studies of biologic effects testing the hypothesis that metals mediate the biologic effects of air pollution particles. A majority of the in vitro and animal model investigations support the postulate that transition metals present in ROFA (especially vanadium) participate in Fenton-like chemical reactions to produce reactive oxygen species. This is associated with tyrosine phosphorylation, nuclear factor kappa B and other transcription factor activation, induction of inflammatory mediator expression, and inflammatory lung injury. It is also evident that vanadium accounts for a significant portion of the biologic activity of ROFA. The extrapolation of this body of investigation on ROFA to the field of ambient air PM is difficult, as particles in numerous environments have such small amounts of vanadium.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWNE R. C. Vanadium poisoning from gas turbines. Br J Ind Med. 1955 Jan;12(1):57–59. doi: 10.1136/oem.12.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
- Byrne A. R., Kosta L. Vanadium in foods and in human body fluids and tissues. Sci Total Environ. 1978 Jul;10(1):17–30. doi: 10.1016/0048-9697(78)90046-3. [DOI] [PubMed] [Google Scholar]
- Carter J. D., Ghio A. J., Samet J. M., Devlin R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997 Oct;146(2):180–188. doi: 10.1006/taap.1997.8254. [DOI] [PubMed] [Google Scholar]
- Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
- Dreher K. L., Jaskot R. H., Lehmann J. R., Richards J. H., McGee J. K., Ghio A. J., Costa D. L. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health. 1997 Feb 21;50(3):285–305. [PubMed] [Google Scholar]
- Dreher K., Jaskot R., Kodavanti U., Lehmann J., Winsett D., Costa D. Soluble transition metals mediate the acute pulmonary injury and airway hyperreactivity induced by residual oil fly ash particles. Chest. 1996 Mar;109(3 Suppl):33S–34S. doi: 10.1378/chest.109.3_supplement.33s-a. [DOI] [PubMed] [Google Scholar]
- Dye J. A., Adler K. B., Richards J. H., Dreher K. L. Epithelial injury induced by exposure to residual oil fly-ash particles: role of reactive oxygen species? Am J Respir Cell Mol Biol. 1997 Nov;17(5):625–633. doi: 10.1165/ajrcmb.17.5.2749. [DOI] [PubMed] [Google Scholar]
- Dye J. A., Adler K. B., Richards J. H., Dreher K. L. Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am J Physiol. 1999 Sep;277(3 Pt 1):L498–L510. doi: 10.1152/ajplung.1999.277.3.L498. [DOI] [PubMed] [Google Scholar]
- Fisher G. L., McNeill K. L., Prentice B. A., McFarland A. R. Physical and biological studies of coal and oil fly ash. Environ Health Perspect. 1983 Sep;51:181–188. doi: 10.1289/ehp.8351181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner S. Y., Lehmann J. R., Costa D. L. Oil fly ash-induced elevation of plasma fibrinogen levels in rats. Toxicol Sci. 2000 Jul;56(1):175–180. doi: 10.1093/toxsci/56.1.175. [DOI] [PubMed] [Google Scholar]
- Gavett S. H., Madison S. L., Dreher K. L., Winsett D. W., McGee J. K., Costa D. L. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res. 1997 Feb;72(2):162–172. doi: 10.1006/enrs.1997.3732. [DOI] [PubMed] [Google Scholar]
- Gavett S. H., Madison S. L., Stevens M. A., Costa D. L. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice. Am J Respir Crit Care Med. 1999 Dec;160(6):1897–1904. doi: 10.1164/ajrccm.160.6.9901053. [DOI] [PubMed] [Google Scholar]
- Ghio A. J., Kim C., Devlin R. B. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):981–988. doi: 10.1164/ajrccm.162.3.9911115. [DOI] [PubMed] [Google Scholar]
- Goldsmith C. A., Frevert C., Imrich A., Sioutas C., Kobzik L. Alveolar macrophage interaction with air pollution particulates. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1191–1195. doi: 10.1289/ehp.97105s51191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsmith C. A., Imrich A., Danaee H., Ning Y. Y., Kobzik L. Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J Toxicol Environ Health A. 1998 Aug 7;54(7):529–545. doi: 10.1080/009841098158683. [DOI] [PubMed] [Google Scholar]
- Grabowski G. M., Paulauskis J. D., Godleski J. J. Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol. 1999 May 1;156(3):170–178. doi: 10.1006/taap.1999.8642. [DOI] [PubMed] [Google Scholar]
- Hamada K., Goldsmith C. A., Kobzik L. Increased airway hyperresponsiveness and inflammation in a juvenile mouse model of asthma exposed to air-pollutant aerosol. J Toxicol Environ Health A. 1999 Oct 15;58(3):129–143. doi: 10.1080/009841099157340. [DOI] [PubMed] [Google Scholar]
- Hamada K., Goldsmith C. A., Kobzik L. Increased airway hyperresponsiveness and inflammation in a juvenile mouse model of asthma exposed to air-pollutant aerosol. J Toxicol Environ Health A. 1999 Oct 15;58(3):129–143. doi: 10.1080/009841099157340. [DOI] [PubMed] [Google Scholar]
- Hauser R., Daskalakis C., Christiani D. C. A regression approach to the analysis of serial peak flow among fuel oil ash exposed workers. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):974–980. doi: 10.1164/ajrccm.154.4.8887594. [DOI] [PubMed] [Google Scholar]
- Hauser R., Elreedy S., Hoppin J. A., Christiani D. C. Airway obstruction in boilermakers exposed to fuel oil ash. A prospective investigation. Am J Respir Crit Care Med. 1995 Nov;152(5 Pt 1):1478–1484. doi: 10.1164/ajrccm.152.5.7582280. [DOI] [PubMed] [Google Scholar]
- Jiang N., Dreher K. L., Dye J. A., Li Y., Richards J. H., Martin L. D., Adler K. B. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism. Toxicol Appl Pharmacol. 2000 Mar 15;163(3):221–230. doi: 10.1006/taap.1999.8886. [DOI] [PubMed] [Google Scholar]
- Kadiiska M. B., Mason R. P., Dreher K. L., Costa D. L., Ghio A. J. In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem Res Toxicol. 1997 Oct;10(10):1104–1108. doi: 10.1021/tx970049r. [DOI] [PubMed] [Google Scholar]
- Kiviluoto M. Observations on the lungs of vanadium workers. Br J Ind Med. 1980 Nov;37(4):363–366. doi: 10.1136/oem.37.4.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiviluoto M., Räsänen O., Rinne A., Rissanen M. Effects of vanadium on the upper respiratory tract of workers in a vanadium factory. A macroscopic and microscopic study. Scand J Work Environ Health. 1979 Mar;5(1):50–58. doi: 10.5271/sjweh.2666. [DOI] [PubMed] [Google Scholar]
- Knecht E. A., Moorman W. J., Clark J. C., Hull R. D., Biagini R. E., Lynch D. W., Boyle T. J., Simon S. D. Pulmonary reactivity to vanadium pentoxide following subchronic inhalation exposure in a non-human primate animal model. J Appl Toxicol. 1992 Dec;12(6):427–434. doi: 10.1002/jat.2550120611. [DOI] [PubMed] [Google Scholar]
- Knecht E. A., Moorman W. J., Clark J. C., Lynch D. W., Lewis T. R. Pulmonary effects of acute vanadium pentoxide inhalation in monkeys. Am Rev Respir Dis. 1985 Dec;132(6):1181–1185. doi: 10.1164/arrd.1985.132.6.1181. [DOI] [PubMed] [Google Scholar]
- Kodavanti U. P., Hauser R., Christiani D. C., Meng Z. H., McGee J., Ledbetter A., Richards J., Costa D. L. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci. 1998 Jun;43(2):204–212. doi: 10.1006/toxs.1998.2460. [DOI] [PubMed] [Google Scholar]
- Kodavanti U. P., Jackson M. C., Ledbetter A. D., Richards J. R., Gardner S. Y., Watkinson W. P., Campen M. J., Costa D. L. Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotaline-induced pulmonary hypertension. J Toxicol Environ Health A. 1999 Aug 27;57(8):543–563. doi: 10.1080/009841099157502. [DOI] [PubMed] [Google Scholar]
- Lambert A. L., Dong W., Selgrade M. K., Gilmour M. I. Enhanced allergic sensitization by residual oil fly ash particles is mediated by soluble metal constituents. Toxicol Appl Pharmacol. 2000 May 15;165(1):84–93. doi: 10.1006/taap.2000.8932. [DOI] [PubMed] [Google Scholar]
- Lambert A. L., Dong W., Winsett D. W., Selgrade M. K., Gilmour M. I. Residual oil fly ash exposure enhances allergic sensitization to house dust mite. Toxicol Appl Pharmacol. 1999 Aug 1;158(3):269–277. doi: 10.1006/taap.1999.8709. [DOI] [PubMed] [Google Scholar]
- Lees R. E. Changes in lung function after exposure to vanadium compounds in fuel oil ash. Br J Ind Med. 1980 Aug;37(3):253–256. doi: 10.1136/oem.37.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quay J. L., Reed W., Samet J., Devlin R. B. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am J Respir Cell Mol Biol. 1998 Jul;19(1):98–106. doi: 10.1165/ajrcmb.19.1.3132. [DOI] [PubMed] [Google Scholar]
- SJOBERG S. G. Vanadium bronchitis from cleaning oil-fired boilers. AMA Arch Ind Health. 1955 Jun;11(6):505–512. [PubMed] [Google Scholar]
- Salvi S. S., Nordenhall C., Blomberg A., Rudell B., Pourazar J., Kelly F. J., Wilson S., Sandström T., Holgate S. T., Frew A. J. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 1):550–557. doi: 10.1164/ajrccm.161.2.9905052. [DOI] [PubMed] [Google Scholar]
- Samet J. M., Dominici F., Curriero F. C., Coursac I., Zeger S. L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000 Dec 14;343(24):1742–1749. doi: 10.1056/NEJM200012143432401. [DOI] [PubMed] [Google Scholar]
- Samet J. M., Ghio A. J., Costa D. L., Madden M. C. Increased expression of cyclooxygenase 2 mediates oil fly ash-induced lung injury. Exp Lung Res. 2000 Jan-Feb;26(1):57–69. doi: 10.1080/019021400269961. [DOI] [PubMed] [Google Scholar]
- Samet J. M., Stonehuerner J., Reed W., Devlin R. B., Dailey L. A., Kennedy T. P., Bromberg P. A., Ghio A. J. Disruption of protein tyrosine phosphate homeostasis in bronchial epithelial cells exposed to oil fly ash. Am J Physiol. 1997 Mar;272(3 Pt 1):L426–L432. doi: 10.1152/ajplung.1997.272.3.L426. [DOI] [PubMed] [Google Scholar]
- Schroeder W. H., Dobson M., Kane D. M., Johnson N. D. Toxic trace elements associated with airborne particulate matter: a review. JAPCA. 1987 Nov;37(11):1267–1285. doi: 10.1080/08940630.1987.10466321. [DOI] [PubMed] [Google Scholar]
- Shukla A., Timblin C., BeruBe K., Gordon T., McKinney W., Driscoll K., Vacek P., Mossman B. T. Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro. Am J Respir Cell Mol Biol. 2000 Aug;23(2):182–187. doi: 10.1165/ajrcmb.23.2.4035. [DOI] [PubMed] [Google Scholar]
- Silbajoris R., Ghio A. J., Samet J. M., Jaskot R., Dreher K. L., Brighton L. E. In vivo and in vitro correlation of pulmonary MAP kinase activation following metallic exposure. Inhal Toxicol. 2000 Jun;12(6):453–468. doi: 10.1080/089583700402860. [DOI] [PubMed] [Google Scholar]
- Stringer B., Kobzik L. Environmental particulate-mediated cytokine production in lung epithelial cells (A549): role of preexisting inflammation and oxidant stress. J Toxicol Environ Health A. 1998 Sep 11;55(1):31–44. doi: 10.1080/009841098158601. [DOI] [PubMed] [Google Scholar]
- Su W. Y., Kodavanti U. P., Jaskot R. H., Costa D. L., Dreher K. L. Temporal expression and cellular distribution of pulmonary fibronectin gene induction following exposure to an emission source particle. J Environ Pathol Toxicol Oncol. 1995;14(3-4):215–225. [PubMed] [Google Scholar]
- WILLIAMS N. Vanadium poisoning from cleaning oil-fired boilers. Br J Ind Med. 1952 Jan;9(1):50–55. doi: 10.1136/oem.9.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkinson W. P., Campen M. J., Costa D. L. Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol Sci. 1998 Feb;41(2):209–216. doi: 10.1006/toxs.1997.2406. [DOI] [PubMed] [Google Scholar]