Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jun;110(Suppl 3):393–396. doi: 10.1289/ehp.02110s3393

Effects of incubation temperature and estrogen exposure on aromatase activity in the brain and gonads of embryonic alligators.

Matthew R Milnes Jr 1, Robert N Roberts 1, Louis J Guillette Jr 1
PMCID: PMC1241188  PMID: 12060834

Abstract

During embryogenesis, incubation temperature and the hormonal environment influence gonadal differentiation of some reptiles, including all crocodilians. Current evidence suggests that aromatase, the enzyme that converts androgens to estrogens, has a role in sexual differentiation of species that exhibit temperature-dependent sex determination (TSD). During the temperature-sensitive period (TSP) of sex determination, we compared aromatase activity in the brain and gonads of putative male and female alligator embryos to determine if aromatase activity in the embryonic brain could provide the hormonal environment necessary for ovarian development in a TSD species. In addition, we assessed the pattern of aromatase activity in the brain and gonads of embryos treated with estradiol-17beta (E(2)) and incubated at male-producing temperatures to compare enzyme activity in E(2) sex-reversed females to control males and females. This has particular significance regarding wildlife species living in areas contaminated with suspected environmental estrogens. Gonadal aromatase activity remained low during the early stages of the TSP in both sexes and increased late in the TSP only in females. Aromatase activity in the brain increased prior to gonadal differentiation in both sexes. These results suggest that aromatase activity in the brain is not directly responsible for mediating differentiation of the gonad. E(2) exposure at male-producing temperatures resulted in sex-reversed females that had intermediate gonad function and masculinized brain activity. This study indicates the need to examine multiple end points and to determine the persistence of developmental alterations in contaminant-exposed wildlife populations.

Full Text

The Full Text of this article is available as a PDF (139.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. E., Smith C. A., Sinclair A. H. Sites of estrogen receptor and aromatase expression in the chicken embryo. Gen Comp Endocrinol. 1997 Nov;108(2):182–190. doi: 10.1006/gcen.1997.6978. [DOI] [PubMed] [Google Scholar]
  2. Bergeron J. M., Gahr M., Horan K., Wibbels T., Crews D. Cloning and in situ hybridization analysis of estrogen receptor in the developing gonad of the red-eared slider turtle, a species with temperature-dependent sex determination. Dev Growth Differ. 1998 Apr;40(2):243–254. doi: 10.1046/j.1440-169x.1998.00013.x. [DOI] [PubMed] [Google Scholar]
  3. Conley A. J., Elf P., Corbin C. J., Dubowsky S., Fivizzani A., Lang J. W. Yolk steroids decline during sexual differentiation in the alligator. Gen Comp Endocrinol. 1997 Aug;107(2):191–200. doi: 10.1006/gcen.1997.6913. [DOI] [PubMed] [Google Scholar]
  4. Crain D. A., Guillette L. J., Jr, Rooney A. A., Pickford D. B. Alterations in steroidogenesis in alligators (Alligator mississippiensis) exposed naturally and experimentally to environmental contaminants. Environ Health Perspect. 1997 May;105(5):528–533. doi: 10.1289/ehp.97105528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crain D. A., Noriega N., Vonier P. M., Arnold S. F., McLachlan J. A., Guillette L. J., Jr Cellular bioavailability of natural hormones and environmental contaminants as a function of serum and cytosolic binding factors. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):261–273. doi: 10.1177/074823379801400116. [DOI] [PubMed] [Google Scholar]
  6. Crews D., Bergeron J. M., Bull J. J., Flores D., Tousignant A., Skipper J. K., Wibbels T. Temperature-dependent sex determination in reptiles: proximate mechanisms, ultimate outcomes, and practical applications. Dev Genet. 1994;15(3):297–312. doi: 10.1002/dvg.1020150310. [DOI] [PubMed] [Google Scholar]
  7. Desvages G., Pieau C. Aromatase activity in gonads of turtle embryos as a function of the incubation temperature of eggs. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):851–853. doi: 10.1016/0960-0760(92)90437-n. [DOI] [PubMed] [Google Scholar]
  8. Gabriel W. N., Blumberg B., Sutton S., Place A. R., Lance V. A. Alligator aromatase cDNA sequence and its expression in embryos at male and female incubation temperatures. J Exp Zool. 2001 Sep 15;290(5):439–448. doi: 10.1002/jez.1087. [DOI] [PubMed] [Google Scholar]
  9. Jeyasuria P., Place A. R. Embryonic brain-gonadal axis in temperature-dependent sex determination of reptiles: a role for P450 aromatase (CYP19). J Exp Zool. 1998 Aug 1;281(5):428–449. [PubMed] [Google Scholar]
  10. Lance V. A., Bogart M. H. Disruption of ovarian development in alligator embryos treated with an aromatase inhibitor. Gen Comp Endocrinol. 1992 Apr;86(1):59–71. doi: 10.1016/0016-6480(92)90126-5. [DOI] [PubMed] [Google Scholar]
  11. Lephart E. D., Simpson E. R. Assay of aromatase activity. Methods Enzymol. 1991;206:477–483. doi: 10.1016/0076-6879(91)06116-k. [DOI] [PubMed] [Google Scholar]
  12. Milligan S. R., Khan O., Nash M. Competitive binding of xenobiotic oestrogens to rat alpha-fetoprotein and to sex steroid binding proteins in human and rainbow trout (Oncorhynchus mykiss) plasma. Gen Comp Endocrinol. 1998 Oct;112(1):89–95. doi: 10.1006/gcen.1998.7146. [DOI] [PubMed] [Google Scholar]
  13. Rhen T., Willingham E., Sakata J. T., Crews D. Incubation temperature influences sex-steroid levels in juvenile red-eared slider turtles, Trachemys scripta, a species with temperature-dependent sex determination. Biol Reprod. 1999 Nov;61(5):1275–1280. doi: 10.1095/biolreprod61.5.1275. [DOI] [PubMed] [Google Scholar]
  14. Sheehan D. M., Willingham E., Gaylor D., Bergeron J. M., Crews D. No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect. 1999 Feb;107(2):155–159. doi: 10.1289/ehp.99107155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith C. A., Joss J. M. Steroidogenic enzyme activity and ovarian differentiation in the saltwater crocodile, Crocodylus porosus. Gen Comp Endocrinol. 1994 Feb;93(2):232–245. doi: 10.1006/gcen.1994.1027. [DOI] [PubMed] [Google Scholar]
  16. Vigier B., Forest M. G., Eychenne B., Bézard J., Garrigou O., Robel P., Josso N. Anti-Müllerian hormone produces endocrine sex reversal of fetal ovaries. Proc Natl Acad Sci U S A. 1989 May;86(10):3684–3688. doi: 10.1073/pnas.86.10.3684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vonier P. M., Crain D. A., McLachlan J. A., Guillette L. J., Jr, Arnold S. F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect. 1996 Dec;104(12):1318–1322. doi: 10.1289/ehp.961041318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Western P. S., Harry J. L., Graves J. A., Sinclair A. H. Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Dev Dyn. 1999 Dec;216(4-5):411–419. doi: 10.1002/(SICI)1097-0177(199912)216:4/5<411::AID-DVDY9>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  19. Willingham E., Baldwin R., Skipper J. K., Crews D. Aromatase activity during embryogenesis in the brain and adrenal-kidney-gonad of the red-eared slider turtle, a species with temperature-dependent sex determination. Gen Comp Endocrinol. 2000 Aug;119(2):202–207. doi: 10.1006/gcen.2000.7505. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES