Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jun;110(Suppl 3):397–402. doi: 10.1289/ehp.02110s3397

Early cerebral activities of the environmental estrogen bisphenol A appear to act via the somatostatin receptor subtype sst(2).

Rosa Maria Facciolo 1, Raffaella Alò 1, Maria Madeo 1, Marcello Canonaco 1, Francesco Dessì-Fulgheri 1
PMCID: PMC1241189  PMID: 12060835

Abstract

Recently, considerable interest has been aroused by the specific actions of bisphenol A (BPA). The present investigation represents a first study dealing with the interaction of BPA with the biologically more active somatostatin receptor subtype (sst(2)) in the rat limbic circuit. After treating pregnant female Sprague-Dawley rats with two doses (400 microg/kg/day; 40 microg/kg/day) of BPA, the binding activity of the above receptor subtype was evaluated in some limbic regions of the offspring. The higher dose proved to be the more effective one, as demonstrated by the elevated affinity of sst(2) with its specific radioligand, [(125)I]-Tyr(0)somatostatin-14. The most dramatic effects of BPA on sst(2) levels occurred at the low-affinity states of such a subtype in some telencephalic limbic areas of postnatal rats (10 days of age; postnatal day [PND] 10). These included lower (p < 0.05) sst(2) levels in the gyrus dentate of the hippocampus and basomedial nucleus of the amygdala; significantly higher (p < 0.01) levels were observed only for the high-affinity states of the periventricular nucleus of the hypothalamus. A similar trend was maintained in PND 23 rats with the exception of much lower levels of the high-affinity sst(2) receptor subtype in the amygdala nucleus and ventromedial hypothalamic nucleus. However, greater changes produced by this environmental estrogen were reported when the binding activity of sst(2) was checked in the presence of the two more important selective agonists (zolpidem and Ro 15-4513) specific for the alpha-containing Gamma-aminobutyric acid (GABA) type A receptor complex. In this case, an even greater potentiating effect (p < 0.001) was mainly obtained for the low-affinity sst(2) receptor subtype in PND 10 animals, with the exception of the high-affinity type in the ventromedial hypothalamic nucleus and gyrus dentate. These results support the contention that an sst(2) subtype alpha-containing GABA type A receptor system might represent an important neuromediating station capable of promoting estrogenlike mechanisms of BPA, especially during the early developmental phases.

Full Text

The Full Text of this article is available as a PDF (386.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acs Z., Zsom L., Mergl Z., Makara G. B. Significance of chloride channel activation in the gamma-aminobutyric acid induced growth hormone secretion in the neonatal rat pituitary. Life Sci. 1993;52(21):1733–1739. doi: 10.1016/0024-3205(93)90482-i. [DOI] [PubMed] [Google Scholar]
  2. Arancibia S., Estupina C., Pesco J., Belmar J., Tapia-Arancibia L. Responsiveness to depolarization of hypothalamic neurons secreting somatostatin under stress and estrous cycle conditions: involvement of GABAergic and steroidal interactions. J Neurosci Res. 1997 Nov 15;50(4):575–584. doi: 10.1002/(SICI)1097-4547(19971115)50:4<575::AID-JNR8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  3. Barnard E. A., Skolnick P., Olsen R. W., Mohler H., Sieghart W., Biggio G., Braestrup C., Bateson A. N., Langer S. Z. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 1998 Jun;50(2):291–313. [PubMed] [Google Scholar]
  4. Beaudet A., Greenspun D., Raelson J., Tannenbaum G. S. Patterns of expression of SSTR1 and SSTR2 somatostatin receptor subtypes in the hypothalamus of the adult rat: relationship to neuroendocrine function. Neuroscience. 1995 Mar;65(2):551–561. doi: 10.1016/0306-4522(94)00486-o. [DOI] [PubMed] [Google Scholar]
  5. Behl C., Widmann M., Trapp T., Holsboer F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun. 1995 Nov 13;216(2):473–482. doi: 10.1006/bbrc.1995.2647. [DOI] [PubMed] [Google Scholar]
  6. Bruns C., Weckbecker G., Raulf F., Kaupmann K., Schoeffter P., Hoyer D., Lübbert H. Molecular pharmacology of somatostatin-receptor subtypes. Ann N Y Acad Sci. 1994 Sep 15;733:138–146. doi: 10.1111/j.1749-6632.1994.tb17263.x. [DOI] [PubMed] [Google Scholar]
  7. Canonaco M., O'Connor L. H., Pfaff D. W., McEwen B. S. GABA[A] receptor level changes in female hamster forebrain following in vivo estrogen progesterone and benzodiazepine treatment: a quantitative autoradiography analysis. Exp Brain Res. 1989;75(3):644–652. doi: 10.1007/BF00249916. [DOI] [PubMed] [Google Scholar]
  8. Colerangle J. B., Roy D. Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. J Steroid Biochem Mol Biol. 1997 Jan;60(1-2):153–160. doi: 10.1016/s0960-0760(96)00130-6. [DOI] [PubMed] [Google Scholar]
  9. Davis A. M., McCarthy M. M. Developmental increase in (3)H-muscimol binding to the gamma-aminobutyric acid(A) receptor in hypothalamic and limbic areas of the rat: why is the ventromedial nucleus of the hypothalamus an exception? Neurosci Lett. 2000 Jul 21;288(3):223–227. doi: 10.1016/s0304-3940(00)01214-3. [DOI] [PubMed] [Google Scholar]
  10. Esclapez M., Houser C. R. Somatostatin neurons are a subpopulation of GABA neurons in the rat dentate gyrus: evidence from colocalization of pre-prosomatostatin and glutamate decarboxylase messenger RNAs. Neuroscience. 1995 Jan;64(2):339–355. doi: 10.1016/0306-4522(94)00406-u. [DOI] [PubMed] [Google Scholar]
  11. Flügge G., Oertel W. H., Wuttke W. Evidence for estrogen-receptive GABAergic neurons in the preoptic/anterior hypothalamic area of the rat brain. Neuroendocrinology. 1986;43(1):1–5. doi: 10.1159/000124500. [DOI] [PubMed] [Google Scholar]
  12. Follesa P., Cagetti E., Mancuso L., Biggio F., Manca A., Maciocco E., Massa F., Desole M. S., Carta M., Busonero F. Increase in expression of the GABA(A) receptor alpha(4) subunit gene induced by withdrawal of, but not by long-term treatment with, benzodiazepine full or partial agonists. Brain Res Mol Brain Res. 2001 Aug 15;92(1-2):138–148. doi: 10.1016/s0169-328x(01)00164-4. [DOI] [PubMed] [Google Scholar]
  13. Funabashi T., Kawaguchi M., Kimura F. The endocrine disrupters butyl benzyl phthalate and bisphenol A increase the expression of progesterone receptor messenger ribonucleic acid in the preoptic area of adult ovariectomized rats. Neuroendocrinology. 2001 Aug;74(2):77–81. doi: 10.1159/000054672. [DOI] [PubMed] [Google Scholar]
  14. Gillies G., Davidson K. GABAergic influences on somatostatin secretion from hypothalamic neurons cultured in defined medium. Neuroendocrinology. 1992 Mar;55(3):248–256. doi: 10.1159/000126122. [DOI] [PubMed] [Google Scholar]
  15. Green P. S., Bishop J., Simpkins J. W. 17 alpha-estradiol exerts neuroprotective effects on SK-N-SH cells. J Neurosci. 1997 Jan 15;17(2):511–515. doi: 10.1523/JNEUROSCI.17-02-00511.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gulinello M., Gong Q. H., Li X., Smith S. S. Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat. Brain Res. 2001 Aug 10;910(1-2):55–66. doi: 10.1016/s0006-8993(01)02565-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000 Jun;224(2):61–68. doi: 10.1046/j.1525-1373.2000.22402.x. [DOI] [PubMed] [Google Scholar]
  18. Herbison A. E. Somatostatin-immunoreactive neurones in the hypothalamic ventromedial nucleus possess oestrogen receptors in the male and female rat. J Neuroendocrinol. 1994 Jun;6(3):323–328. doi: 10.1111/j.1365-2826.1994.tb00589.x. [DOI] [PubMed] [Google Scholar]
  19. Herbison A. E., Theodosis D. T. Absence of estrogen receptor immunoreactivity in somatostatin (SRIF) neurons of the periventricular nucleus but sexually dimorphic colocalization of estrogen receptor and SRIF immunoreactivities in neurons of the bed nucleus of the stria terminalis. Endocrinology. 1993 Apr;132(4):1707–1714. doi: 10.1210/endo.132.4.7681764. [DOI] [PubMed] [Google Scholar]
  20. Hervieu G., Emson P. C. Visualisation of somatostatin receptor sst(3) in the rat central nervous system. Brain Res Mol Brain Res. 1999 Aug 25;71(2):290–303. doi: 10.1016/s0169-328x(99)00201-6. [DOI] [PubMed] [Google Scholar]
  21. Howdeshell K. L., Hotchkiss A. K., Thayer K. A., Vandenbergh J. G., vom Saal F. S. Exposure to bisphenol A advances puberty. Nature. 1999 Oct 21;401(6755):763–764. doi: 10.1038/44517. [DOI] [PubMed] [Google Scholar]
  22. Kimura N., Hayafuji C., Kimura N. Characterization of 17-beta-estradiol-dependent and -independent somatostatin receptor subtypes in rat anterior pituitary. J Biol Chem. 1989 Apr 25;264(12):7033–7040. [PubMed] [Google Scholar]
  23. Korach K. S. Surprising places of estrogenic activity. Endocrinology. 1993 Jun;132(6):2277–2278. doi: 10.1210/endo.132.6.8504730. [DOI] [PubMed] [Google Scholar]
  24. Laws S. C., Carey S. A., Ferrell J. M., Bodman G. J., Cooper R. L. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci. 2000 Mar;54(1):154–167. doi: 10.1093/toxsci/54.1.154. [DOI] [PubMed] [Google Scholar]
  25. Leresche N., Asprodini E., Emri Z., Cope D. W., Crunelli V. Somatostatin inhibits GABAergic transmission in the sensory thalamus via presynaptic receptors. Neuroscience. 2000;98(3):513–522. doi: 10.1016/s0306-4522(00)00107-x. [DOI] [PubMed] [Google Scholar]
  26. Leroux P., Weissmann D., Pujol J. F., Vaudry H. Quantitative autoradiography of somatostatin receptors in the rat limbic system. J Comp Neurol. 1993 May 15;331(3):389–401. doi: 10.1002/cne.903310308. [DOI] [PubMed] [Google Scholar]
  27. Lopez F., Estève J. P., Buscail L., Delesque N., Saint-Laurent N., Théveniau M., Nahmias C., Vaysse N., Susini C. The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem. 1997 Sep 26;272(39):24448–24454. doi: 10.1074/jbc.272.39.24448. [DOI] [PubMed] [Google Scholar]
  28. Martin J. L., Chesselet M. F., Raynor K., Gonzales C., Reisine T. Differential distribution of somatostatin receptor subtypes in rat brain revealed by newly developed somatostatin analogs. Neuroscience. 1991;41(2-3):581–593. doi: 10.1016/0306-4522(91)90351-n. [DOI] [PubMed] [Google Scholar]
  29. Mathé A. A., Nomikos G. G., Svensson T. H. In vivo release of somatostatin from rat hippocampus and striatum. Neurosci Lett. 1993 Jan 12;149(2):201–204. doi: 10.1016/0304-3940(93)90771-c. [DOI] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Papaconstantinou A. D., Umbreit T. H., Fisher B. R., Goering P. L., Lappas N. T., Brown K. M. Bisphenol A-induced increase in uterine weight and alterations in uterine morphology in ovariectomized B6C3F1 mice: role of the estrogen receptor. Toxicol Sci. 2000 Aug;56(2):332–339. doi: 10.1093/toxsci/56.2.332. [DOI] [PubMed] [Google Scholar]
  33. Quintela M., Señaris R., Heiman M. L., Casanueva F. F., Dieguez C. Leptin inhibits in vitro hypothalamic somatostatin secretion and somatostatin mRNA levels. Endocrinology. 1997 Dec;138(12):5641–5644. doi: 10.1210/endo.138.12.5713. [DOI] [PubMed] [Google Scholar]
  34. Ramos J. G., Varayoud J., Sonnenschein C., Soto A. M., Muñoz De Toro M., Luque E. H. Prenatal exposure to low doses of bisphenol A alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol Reprod. 2001 Oct;65(4):1271–1277. doi: 10.1095/biolreprod65.4.1271. [DOI] [PubMed] [Google Scholar]
  35. Rohrer S. P., Birzin E. T., Mosley R. T., Berk S. C., Hutchins S. M., Shen D. M., Xiong Y., Hayes E. C., Parmar R. M., Foor F. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science. 1998 Oct 23;282(5389):737–740. doi: 10.1126/science.282.5389.737. [DOI] [PubMed] [Google Scholar]
  36. Schumacher M., McEwen B. S. Steroid and barbiturate modulation of the GABAa receptor. Possible mechanisms. Mol Neurobiol. 1989 Winter;3(4):275–304. doi: 10.1007/BF02740608. [DOI] [PubMed] [Google Scholar]
  37. Sigel E., Buhr A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci. 1997 Nov;18(11):425–429. doi: 10.1016/s0165-6147(97)01118-8. [DOI] [PubMed] [Google Scholar]
  38. Simonian S. X., Murray H. E., Gillies G. E., Herbison A. E. Estrogen-dependent ontogeny of sex differences in somatostatin neurons of the hypothalamic periventricular nucleus. Endocrinology. 1998 Mar;139(3):1420–1428. doi: 10.1210/endo.139.3.5814. [DOI] [PubMed] [Google Scholar]
  39. Slama A., Videau C., Kordon C., Epelbaum J. Estradiol regulation of somatostatin receptors in the arcuate nucleus of the female rat. Neuroendocrinology. 1992 Aug;56(2):240–245. doi: 10.1159/000126234. [DOI] [PubMed] [Google Scholar]
  40. Smith S. S., Gong Q. H., Li X., Moran M. H., Bitran D., Frye C. A., Hsu F. C. Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J Neurosci. 1998 Jul 15;18(14):5275–5284. doi: 10.1523/JNEUROSCI.18-14-05275.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
  42. Tannenbaum G. S., Ling N. The interrelationship of growth hormone (GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology. 1984 Nov;115(5):1952–1957. doi: 10.1210/endo-115-5-1952. [DOI] [PubMed] [Google Scholar]
  43. Visser-Wisselaar H. A., Van Uffelen C. J., Van Koetsveld P. M., Lichtenauer-Kaligis E. G., Waaijers A. M., Uitterlinden P., Mooy D. M., Lamberts S. W., Hofland L. J. 17-beta-estradiol-dependent regulation of somatostatin receptor subtype expression in the 7315b prolactin secreting rat pituitary tumor in vitro and in vivo. Endocrinology. 1997 Mar;138(3):1180–1189. doi: 10.1210/endo.138.3.5016. [DOI] [PubMed] [Google Scholar]
  44. vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES