Abstract
Studies have shown that female mosquitofish living downstream of a paper mill located on the Fenholloway River, Florida, have masculinized secondary sex characteristics, including altered anal fin development and reproductive behavior. Masculinization can be caused by exposure to androgens in the water or from an alteration in aromatase activity in the fish. We hypothesized that aromatase activity would be inhibited by a component(s) of the paper mill effluent. Aromatase inhibition could masculinize the hormonal profile and, subsequently, secondary sex characteristics of the exposed females. Therefore, we predicted that ovarian and brain aromatase activity would be lower in the female mosquitofish from the Fenholloway River compared with the reference site, the Econfina River. Adult females were collected and standard length, body mass, anal fin length, and segment number were measured. Ovarian and brain aromatase activity were determined using a tritiated water assay. Fenholloway females had masculinized anal fin development as indicated by an increase in the number of segments in the longest anal fin ray (p < 0.0001), yet the length of the ray did not differ between sites (p = 0.95). Fenholloway females exhibited higher ovarian (p = 0.0039) and brain (p = 0.0003) aromatase activity compared with reference site fish. These data do not support aromatase inhibition as the mechanism for masculinization, suggesting that the masculinization of the Fenholloway female mosquitofish is due to androgenic contaminants. Future studies should examine the relationship between aromatase enzyme activity and exposure to environmental androgens.
Full Text
The Full Text of this article is available as a PDF (531.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adlercreutz H., Bannwart C., Wähälä K., Mäkelä T., Brunow G., Hase T., Arosemena P. J., Kellis J. T., Jr, Vickery L. E. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol. 1993 Feb;44(2):147–153. doi: 10.1016/0960-0760(93)90022-o. [DOI] [PubMed] [Google Scholar]
- Adlercreutz H. Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect. 1995 Oct;103 (Suppl 7):103–112. doi: 10.1289/ehp.95103s7103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bortone S. A., Cody R. P. Morphological masculinization in poeciliid females from a paper mill effluent receiving tributary of the St. Johns River, Florida, USA. Bull Environ Contam Toxicol. 1999 Aug;63(2):150–156. doi: 10.1007/s001289900960. [DOI] [PubMed] [Google Scholar]
- Bortone S. A., Davis W. P., Bundrick C. M. Morphological and behavioral characters in mosquitofish as potential bioindication of exposure to kraft mill effluent. Bull Environ Contam Toxicol. 1989 Sep;43(3):370–377. doi: 10.1007/BF01701871. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Callard G. V., Petro Z., Ryan K. J. Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology. 1978 Dec;103(6):2283–2290. doi: 10.1210/endo-103-6-2283. [DOI] [PubMed] [Google Scholar]
- Callard G. V., Pudney J. A., Kendall S. L., Reinboth R. In vitro conversion of androgen to estrogen in amphioxus gonadal tissues. Gen Comp Endocrinol. 1984 Oct;56(1):53–58. doi: 10.1016/0016-6480(84)90060-1. [DOI] [PubMed] [Google Scholar]
- Campbell D. R., Kurzer M. S. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J Steroid Biochem Mol Biol. 1993 Sep;46(3):381–388. doi: 10.1016/0960-0760(93)90228-o. [DOI] [PubMed] [Google Scholar]
- Chiang E. F., Yan Y. L., Guiguen Y., Postlethwait J., Chung Bc Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol Biol Evol. 2001 Apr;18(4):542–550. doi: 10.1093/oxfordjournals.molbev.a003833. [DOI] [PubMed] [Google Scholar]
- Conley A., Hinshelwood M. Mammalian aromatases. Reproduction. 2001 May;121(5):685–695. doi: 10.1530/rep.0.1210685. [DOI] [PubMed] [Google Scholar]
- Crain D. A., Guillette L. J., Jr, Rooney A. A., Pickford D. B. Alterations in steroidogenesis in alligators (Alligator mississippiensis) exposed naturally and experimentally to environmental contaminants. Environ Health Perspect. 1997 May;105(5):528–533. doi: 10.1289/ehp.97105528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crain D. A., Noriega N., Vonier P. M., Arnold S. F., McLachlan J. A., Guillette L. J., Jr Cellular bioavailability of natural hormones and environmental contaminants as a function of serum and cytosolic binding factors. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):261–273. doi: 10.1177/074823379801400116. [DOI] [PubMed] [Google Scholar]
- D'Cotta H., Fostier A., Guiguen Y., Govoroun M., Baroiller J. F. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus. Mol Reprod Dev. 2001 Jul;59(3):265–276. doi: 10.1002/mrd.1031. [DOI] [PubMed] [Google Scholar]
- Danzo B. J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect. 1997 Mar;105(3):294–301. doi: 10.1289/ehp.97105294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daston G. P., Gooch J. W., Breslin W. J., Shuey D. L., Nikiforov A. I., Fico T. A., Gorsuch J. W. Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reprod Toxicol. 1997 Jul-Aug;11(4):465–481. doi: 10.1016/s0890-6238(97)00014-2. [DOI] [PubMed] [Google Scholar]
- Denton T. E., Howell W. M., Allison J. J., McCollum J., Marks B. Masculinization of female mosquitofish by exposure to plant sterols and Mycobacterium smegmatis. Bull Environ Contam Toxicol. 1985 Nov;35(5):627–632. doi: 10.1007/BF01636565. [DOI] [PubMed] [Google Scholar]
- Folmar L. C., Denslow N. D., Rao V., Chow M., Crain D. A., Enblom J., Marcino J., Guillette L. J., Jr Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ Health Perspect. 1996 Oct;104(10):1096–1101. doi: 10.1289/ehp.961041096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray L. E., Ostby J., Furr J., Wolf C. J., Lambright C., Parks L., Veeramachaneni D. N., Wilson V., Price M., Hotchkiss A. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update. 2001 May-Jun;7(3):248–264. doi: 10.1093/humupd/7.3.248. [DOI] [PubMed] [Google Scholar]
- Gunderson M. P., LeBlanc G. A., Guillette L. J., Jr Alterations in sexually dimorphic biotransformation of testosterone in juvenile American alligators (alligator mississippiensis) from contaminated lakes. Environ Health Perspect. 2001 Dec;109(12):1257–1264. doi: 10.1289/ehp.011091257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori S. H., Kodama T., Tanahashi K. Induction of vitellogenin synthesis in goldfish by massive doses of androgens. Gen Comp Endocrinol. 1979 Mar;37(3):306–320. doi: 10.1016/0016-6480(79)90004-2. [DOI] [PubMed] [Google Scholar]
- Jenkins R., Angus R. A., McNatt H., Howell W. M., Kemppainen J. A., Kirk M., Wilson E. M. Identification of androstenedione in a river containing paper mill effluent. Environ Toxicol Chem. 2001 Jun;20(6):1325–1331. doi: 10.1897/1551-5028(2001)020<1325:ioaiar>2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Kelce W. R., Gray L. E., Wilson E. M. Antiandrogens as environmental endocrine disruptors. Reprod Fertil Dev. 1998;10(1):105–111. doi: 10.1071/r98051. [DOI] [PubMed] [Google Scholar]
- Kishida M., Callard G. V. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology. 2001 Feb;142(2):740–750. doi: 10.1210/endo.142.2.7928. [DOI] [PubMed] [Google Scholar]
- Kitano T., Takamune K., Kobayashi T., Nagahama Y., Abe S. I. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol. 1999 Oct;23(2):167–176. doi: 10.1677/jme.0.0230167. [DOI] [PubMed] [Google Scholar]
- McLachlan J. A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev. 2001 Jun;22(3):319–341. doi: 10.1210/edrv.22.3.0432. [DOI] [PubMed] [Google Scholar]
- Orlando E. F., Guillette L. J., Jr A re-examination of variation associated with environmentally stressed organisms. Hum Reprod Update. 2001 May-Jun;7(3):265–272. doi: 10.1093/humupd/7.3.265. [DOI] [PubMed] [Google Scholar]
- Parks L. G., Lambright C. S., Orlando E. F., Guillette L. J., Jr, Ankley G. T., Gray L. E., Jr Masculinization of female mosquitofish in Kraft mill effluent-contaminated Fenholloway River water is associated with androgen receptor agonist activity. Toxicol Sci. 2001 Aug;62(2):257–267. doi: 10.1093/toxsci/62.2.257. [DOI] [PubMed] [Google Scholar]
- Parks L. G., LeBlanc G. A. Involvement of multiple biotransformation processes in the metabolic elimination of testosterone by juvenile and adult fathead minnows (Pimephales promelas). Gen Comp Endocrinol. 1998 Oct;112(1):69–79. doi: 10.1006/gcen.1998.7131. [DOI] [PubMed] [Google Scholar]
- Pasmanik M., Callard G. V. Changes in brain aromatase and 5 alpha-reductase activities correlate significantly with seasonal reproductive cycles in goldfish (Carassius auratus). Endocrinology. 1988 Apr;122(4):1349–1356. doi: 10.1210/endo-122-4-1349. [DOI] [PubMed] [Google Scholar]
- Pickford D. B., Morris I. D. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro. Environ Health Perspect. 1999 Apr;107(4):285–292. doi: 10.1289/ehp.99107285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosa-Molinar E, Proskocil BJ, Hendricks SE, Fritzsch B. A mechanism for anterior transposition of the anal fin and its appendicular support in the western mosquitofish, gambusia affinis affinis. Acta Anat (Basel) 1998;163(2):75–91. [PubMed] [Google Scholar]
- Sanderson J. T., Letcher R. J., Heneweer M., Giesy J. P., van den Berg M. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environ Health Perspect. 2001 Oct;109(10):1027–1031. doi: 10.1289/ehp.011091027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanderson J. T., Seinen W., Giesy J. P., van den Berg M. 2-Chloro-s-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: a novel mechanism for estrogenicity? Toxicol Sci. 2000 Mar;54(1):121–127. doi: 10.1093/toxsci/54.1.121. [DOI] [PubMed] [Google Scholar]
- Simpson E. R., Mahendroo M. S., Means G. D., Kilgore M. W., Hinshelwood M. M., Graham-Lorence S., Amarneh B., Ito Y., Fisher C. R., Michael M. D. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994 Jun;15(3):342–355. doi: 10.1210/edrv-15-3-342. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tchoudakova A., Callard G. V. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology. 1998 Apr;139(4):2179–2189. doi: 10.1210/endo.139.4.5899. [DOI] [PubMed] [Google Scholar]
- Van der Kraak G. J., Munkittrick K. R., McMaster M. E., Portt C. B., Chang J. P. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites. Toxicol Appl Pharmacol. 1992 Aug;115(2):224–233. doi: 10.1016/0041-008x(92)90327-o. [DOI] [PubMed] [Google Scholar]