Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Jun;110(Suppl 3):451–488. doi: 10.1289/ehp.110-1241197

Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air.

Carl-Elis Boström 1, Per Gerde 1, Annika Hanberg 1, Bengt Jernström 1, Christer Johansson 1, Titus Kyrklund 1, Agneta Rannug 1, Margareta Törnqvist 1, Katarina Victorin 1, Roger Westerholm 1
PMCID: PMC1241197  PMID: 12060843

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion. Domestic wood burning and road traffic are the major sources of PAHs in Sweden. In Stockholm, the sum of 14 different PAHs is 100-200 ng/m(3) at the street-level site, the most abundant being phenanthrene. Benzo[a]pyrene (B[a]P) varies between 1 and 2 ng/m(3). Exposure to PAH-containing substances increases the risk of cancer in humans. The carcinogenicity of PAHs is associated with the complexity of the molecule, i.e., increasing number of benzenoid rings, and with metabolic activation to reactive diol epoxide intermediates and their subsequent covalent binding to critical targets in DNA. B[a]P is the main indicator of carcinogenic PAHs. Fluoranthene is an important volatile PAH because it occurs at high concentrations in ambient air and because it is an experimental carcinogen in certain test systems. Thus, fluoranthene is suggested as a complementary indicator to B[a]P. The most carcinogenic PAH identified, dibenzo[a,l]pyrene, is also suggested as an indicator, although it occurs at very low concentrations. Quantitative cancer risk estimates of PAHs as air pollutants are very uncertain because of the lack of useful, good-quality data. According to the World Health Organization Air Quality Guidelines for Europe, the unit risk is 9 X 10(-5) per ng/m(3) of B[a]P as indicator of the total PAH content, namely, lifetime exposure to 0.1 ng/m(3) would theoretically lead to one extra cancer case in 100,000 exposed individuals. This concentration of 0.1 ng/m(3) of B[a]P is suggested as a health-based guideline. Because the carcinogenic potency of fluoranthene has been estimated to be approximately 20 times less than that of B[a]P, a tentative guideline value of 2 ng/m(3) is suggested for fluoranthene. Other significant PAHs are phenanthrene, methylated phenanthrenes/anthracenes and pyrene (high air concentrations), and large-molecule PAHs such as dibenz[a,h]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene (high carcinogenicity). Additional source-specific indicators are benzo[ghi]perylene for gasoline vehicles, retene for wood combustion, and dibenzothiophene and benzonaphthothiophene for sulfur-containing fuels.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. D., Probst M. R., Perdew G. H. Immunohistochemical double-staining for Ah receptor and ARNT in human embryonic palatal shelves. Teratology. 1994 Nov;50(5):361–366. doi: 10.1002/tera.1420500507. [DOI] [PubMed] [Google Scholar]
  2. Amin S., Desai D., Dai W., Harvey R. G., Hecht S. S. Tumorigenicity in newborn mice of fjord region and other sterically hindered diol epoxides of benzo[g]chrysene, dibenzo[a,l]pyrene (dibenzo[def,p]chrysene), 4H-cyclopenta[def]chrysene and fluoranthene. Carcinogenesis. 1995 Nov;16(11):2813–2817. doi: 10.1093/carcin/16.11.2813. [DOI] [PubMed] [Google Scholar]
  3. Angerer J., Mannschreck C., Gündel J. Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health. 1997;70(6):365–377. doi: 10.1007/s004200050231. [DOI] [PubMed] [Google Scholar]
  4. Anttila S., Hietanen E., Vainio H., Camus A. M., Gelboin H. V., Park S. S., Heikkilä L., Karjalainen A., Bartsch H. Smoking and peripheral type of cancer are related to high levels of pulmonary cytochrome P450IA in lung cancer patients. Int J Cancer. 1991 Mar 12;47(5):681–685. doi: 10.1002/ijc.2910470509. [DOI] [PubMed] [Google Scholar]
  5. Anttila S., Hukkanen J., Hakkola J., Stjernvall T., Beaune P., Edwards R. J., Boobis A. R., Pelkonen O., Raunio H. Expression and localization of CYP3A4 and CYP3A5 in human lung. Am J Respir Cell Mol Biol. 1997 Mar;16(3):242–249. doi: 10.1165/ajrcmb.16.3.9070608. [DOI] [PubMed] [Google Scholar]
  6. Armstrong B., Tremblay C., Baris D., Thériault G. Lung cancer mortality and polynuclear aromatic hydrocarbons: a case-cohort study of aluminum production workers in Arvida, Quebec, Canada. Am J Epidemiol. 1994 Feb 1;139(3):250–262. doi: 10.1093/oxfordjournals.aje.a116992. [DOI] [PubMed] [Google Scholar]
  7. Board P. G., Baker R. T., Chelvanayagam G., Jermiin L. S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. doi: 10.1042/bj3280929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boffetta P., Jourenkova N., Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997 May;8(3):444–472. doi: 10.1023/a:1018465507029. [DOI] [PubMed] [Google Scholar]
  9. Bond J. A., Harkema J. R., Russell V. I. Regional distribution of xenobiotic metabolizing enzymes in respiratory airways of dogs. Drug Metab Dispos. 1988 Jan-Feb;16(1):116–124. [PubMed] [Google Scholar]
  10. Boroujerdi M., Kung H., Wilson A. G., Anderson M. W. Metabolism and DNA binding of benzo(a)pyrene in vivo in the rat. Cancer Res. 1981 Mar;41(3):951–957. [PubMed] [Google Scholar]
  11. Boström C. E., Almén J., Steen B., Westerholm R. Human exposure to urban air pollution. Environ Health Perspect. 1994 Oct;102 (Suppl 4):39–47. doi: 10.1289/ehp.102-1566930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bresnick E., Eastman A. Alkylation of mammalian cell DNA, persistence of adducts, and relationship to carcinogenesis. Drug Metab Rev. 1982;13(2):189–205. doi: 10.3109/03602538209029996. [DOI] [PubMed] [Google Scholar]
  13. Brunmark P., Harriman S., Skipper P. L., Wishnok J. S., Amin S., Tannenbaum S. R. Identification of subdomain IB in human serum albumin as a major binding site for polycyclic aromatic hydrocarbon epoxides. Chem Res Toxicol. 1997 Aug;10(8):880–886. doi: 10.1021/tx9700782. [DOI] [PubMed] [Google Scholar]
  14. Burgess J. A., Stevens C. W., Fahl W. E. Mutation at separate gene loci in Salmonella typhimurium TA100 related to DNA nucleotide modification by stereoisomeric benzo(a)pyrene 7,8-diol-9,10-epoxides. Cancer Res. 1985 Sep;45(9):4257–4262. [PubMed] [Google Scholar]
  15. Burns F., Albert R., Altshuler B., Morris E. Approach to risk assessment for genotoxic carcinogens based on data from the mouse skin initiation-promotion model. Environ Health Perspect. 1983 Apr;50:309–320. doi: 10.1289/ehp.8350309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Busby W. F., Jr, Goldman M. E., Newberne P. M., Wogan G. N. Tumorigenicity of fluoranthene in a newborn mouse lung adenoma bioassay. Carcinogenesis. 1984 Oct;5(10):1311–1316. doi: 10.1093/carcin/5.10.1311. [DOI] [PubMed] [Google Scholar]
  17. Carstensen U., Yang K., Levin J. O., Ostman C., Nilsson T., Hemminki K., Hagmar L. Genotoxic exposures of potroom workers. Scand J Work Environ Health. 1999 Feb;25(1):24–32. doi: 10.5271/sjweh.379. [DOI] [PubMed] [Google Scholar]
  18. Casale G. P., Higginbotham S., Johansson S. L., Rogan E. G., Cavalieri E. L. Inflammatory response of mouse skin exposed to the very potent carcinogen dibenzo[a,l]pyrene: a model for tumor promotion. Fundam Appl Toxicol. 1997 Mar;36(1):71–78. doi: 10.1006/faat.1997.2291. [DOI] [PubMed] [Google Scholar]
  19. Cavalieri E. L., Higginbotham S., RamaKrishna N. V., Devanesan P. D., Todorovic R., Rogan E. G., Salmasi S. Comparative dose-response tumorigenicity studies of dibenzo[alpha,l]pyrene versus 7,12-dimethylbenz[alpha]anthracene, benzo[alpha]pyrene and two dibenzo[alpha,l]pyrene dihydrodiols in mouse skin and rat mammary gland. Carcinogenesis. 1991 Oct;12(10):1939–1944. doi: 10.1093/carcin/12.10.1939. [DOI] [PubMed] [Google Scholar]
  20. Cavalieri E. L., Rogan E. G. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica. 1995 Jul;25(7):677–688. doi: 10.3109/00498259509061885. [DOI] [PubMed] [Google Scholar]
  21. Cavalieri E. L., Rogan E. G., Higginbotham S., Cremonesi P., Salmasi S. Tumor-initiating activity in mouse skin and carcinogenicity in rat mammary gland of dibenzo[a]pyrenes: the very potent environmental carcinogen dibenzo[a, l]pyrene. J Cancer Res Clin Oncol. 1989;115(1):67–72. doi: 10.1007/BF00391602. [DOI] [PubMed] [Google Scholar]
  22. Chang R. L., Wood A. W., Conney A. H., Yagi H., Sayer J. M., Thakker D. R., Jerina D. M., Levin W. Role of diaxial versus diequatorial hydroxyl groups in the tumorigenic activity of a benzo[a]pyrene bay-region diol epoxide. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8633–8636. doi: 10.1073/pnas.84.23.8633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chu I., Ng K. M., Benoit F. M., Moir D. Comparative metabolism of phenanthrene in the rat and guinea pig. J Environ Sci Health B. 1992 Dec;27(6):729–749. doi: 10.1080/03601239209372809. [DOI] [PubMed] [Google Scholar]
  24. Collins J. F., Brown J. P., Alexeeff G. V., Salmon A. G. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol. 1998 Aug;28(1):45–54. doi: 10.1006/rtph.1998.1235. [DOI] [PubMed] [Google Scholar]
  25. Collins J. F., Brown J. P., Dawson S. V., Marty M. A. Risk assessment for benzo[a]pyrene. Regul Toxicol Pharmacol. 1991 Apr;13(2):170–184. doi: 10.1016/0273-2300(91)90020-v. [DOI] [PubMed] [Google Scholar]
  26. Constantin D., Mehrotra K., Rahimtula A., Moldéus P., Jernström B. Stimulatory effects of sulfur and nitrogen oxides on carcinogen activation in human polymorphonuclear leukocytes. Environ Health Perspect. 1994 Oct;102 (Suppl 4):161–164. doi: 10.1289/ehp.94102s4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Costantino J. P., Redmond C. K., Bearden A. Occupationally related cancer risk among coke oven workers: 30 years of follow-up. J Occup Environ Med. 1995 May;37(5):597–604. doi: 10.1097/00043764-199505000-00009. [DOI] [PubMed] [Google Scholar]
  28. Crump K. S., Hoel D. G., Langley C. H., Peto R. Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res. 1976 Sep;36(9 PT1):2973–2979. [PubMed] [Google Scholar]
  29. Culp S. J., Gaylor D. W., Sheldon W. G., Goldstein L. S., Beland F. A. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis. 1998 Jan;19(1):117–124. doi: 10.1093/carcin/19.1.117. [DOI] [PubMed] [Google Scholar]
  30. Daly A. K., Fairbrother K. S., Smart J. Recent advances in understanding the molecular basis of polymorphisms in genes encoding cytochrome P450 enzymes. Toxicol Lett. 1998 Dec 28;102-103:143–147. doi: 10.1016/s0378-4274(98)00299-9. [DOI] [PubMed] [Google Scholar]
  31. Day B. W., Sahali Y., Hutchins D. A., Wildschütte M., Pastorelli R., Nguyen T. T., Naylor S., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Fluoranthene metabolism: human and rat liver microsomes display different stereoselective formation of the trans-2,3-dihydrodiol. Chem Res Toxicol. 1992 Nov-Dec;5(6):779–786. doi: 10.1021/tx00030a008. [DOI] [PubMed] [Google Scholar]
  32. Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–432. doi: 10.1126/science.274.5286.430. [DOI] [PubMed] [Google Scholar]
  33. Deutsch-Wenzel R. P., Brune H., Grimmer G., Dettbarn G., Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 1983 Sep;71(3):539–544. [PubMed] [Google Scholar]
  34. Doll R., Peto R., Wheatley K., Gray R., Sutherland I. Mortality in relation to smoking: 40 years' observations on male British doctors. BMJ. 1994 Oct 8;309(6959):901–911. doi: 10.1136/bmj.309.6959.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Einolf H. J., Story W. T., Marcus C. B., Larsen M. C., Jefcoate C. R., Greenlee W. F., Yagi H., Jerina D. M., Amin S., Park S. S. Role of cytochrome P450 enzyme induction in the metabolic activation of benzo[c]phenanthrene in human cell lines and mouse epidermis. Chem Res Toxicol. 1997 May;10(5):609–617. doi: 10.1021/tx960174n. [DOI] [PubMed] [Google Scholar]
  36. Emmelin A., Nyström L., Wall S. Diesel exhaust exposure and smoking: a case-referent study of lung cancer among Swedish dock workers. Epidemiology. 1993 May;4(3):237–244. [PubMed] [Google Scholar]
  37. Enan E., Matsumura F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol. 1996 Nov 22;52(10):1599–1612. doi: 10.1016/s0006-2952(96)00566-7. [DOI] [PubMed] [Google Scholar]
  38. Evanoff B. A., Gustavsson P., Hogstedt C. Mortality and incidence of cancer in a cohort of Swedish chimney sweeps: an extended follow up study. Br J Ind Med. 1993 May;50(5):450–459. doi: 10.1136/oem.50.5.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Feron V. J., de Jong D., Emmelot P. Letter: Dose-response correlation for the induction of respiratory-tract tumours in Syrian golden hamsters by intratracheal instillations of benzo(a)pyrene. Eur J Cancer. 1973 May;9(5):387–390. doi: 10.1016/0014-2964(73)90057-1. [DOI] [PubMed] [Google Scholar]
  40. Ferreira Júnior M. F., Tas S., dell'Omo M., Goormans G., Buchet J. P., Lauwerys R. Determinants of benzo(a)pyrenediol epoxide adducts to haemoglobin in workers exposed to polycyclic aromatic hydrocarbons. Occup Environ Med. 1994 Jul;51(7):451–455. doi: 10.1136/oem.51.7.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Fromme H., Oddoy A., Piloty M., Krause M., Lahrz T. Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ. 1998 Jun 30;217(1-2):165–173. doi: 10.1016/s0048-9697(98)00189-2. [DOI] [PubMed] [Google Scholar]
  42. Gahmberg C. G., Sekki A., Kosunen T. U., Holsti L. R., Mäkelä O. Induction of aryl hydrocarbon hydroxylase activity and pulmonary carcinoma. Int J Cancer. 1979 Mar 15;23(3):302–305. doi: 10.1002/ijc.2910230305. [DOI] [PubMed] [Google Scholar]
  43. Garshick E., Schenker M. B., Muñoz A., Segal M., Smith T. J., Woskie S. R., Hammond S. K., Speizer F. E. A case-control study of lung cancer and diesel exhaust exposure in railroad workers. Am Rev Respir Dis. 1987 Jun;135(6):1242–1248. doi: 10.1164/arrd.1987.135.6.1242. [DOI] [PubMed] [Google Scholar]
  44. Geacintov N. E., Cosman M., Hingerty B. E., Amin S., Broyde S., Patel D. J. NMR solution structures of stereoisometric covalent polycyclic aromatic carcinogen-DNA adduct: principles, patterns, and diversity. Chem Res Toxicol. 1997 Feb;10(2):111–146. doi: 10.1021/tx9601418. [DOI] [PubMed] [Google Scholar]
  45. Gelboin H. V. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev. 1980 Oct;60(4):1107–1166. doi: 10.1152/physrev.1980.60.4.1107. [DOI] [PubMed] [Google Scholar]
  46. Gerde P., Muggenburg B. A., Hoover M. D., Henderson R. F. Disposition of polycyclic aromatic hydrocarbons in the respiratory tract of the beagle dog. I. The alveolar region. Toxicol Appl Pharmacol. 1993 Aug;121(2):313–318. doi: 10.1006/taap.1993.1159. [DOI] [PubMed] [Google Scholar]
  47. Gerde P., Muggenburg B. A., Lundborg M., Dahl A. R. The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen. Carcinogenesis. 2001 May;22(5):741–749. doi: 10.1093/carcin/22.5.741. [DOI] [PubMed] [Google Scholar]
  48. Gerde P., Muggenburg B. A., Scott G. G., Lewis J. L., Pyon K. H., Dahl A. R. Local metabolism in lung airways increases the uncertainty of pyrene as a biomarker of polycyclic aromatic hydrocarbon exposure. Carcinogenesis. 1998 Mar;19(3):493–500. doi: 10.1093/carcin/19.3.493. [DOI] [PubMed] [Google Scholar]
  49. Gerde P., Muggenburg B. A., Thornton-Manning J. R., Lewis J. L., Pyon K. H., Dahl A. R. Benzo[a]pyrene at an environmentally relevant dose is slowly absorbed by, and extensively metabolized in, tracheal epithelium. Carcinogenesis. 1997 Sep;18(9):1825–1832. doi: 10.1093/carcin/18.9.1825. [DOI] [PubMed] [Google Scholar]
  50. Gilbert N. L., Viau C. Biological monitoring of environmental exposure to PAHs in the vicinity of a Söderberg aluminium reduction plant. Occup Environ Med. 1997 Aug;54(8):619–621. doi: 10.1136/oem.54.8.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Gillner M., Bergman J., Cambillau C., Fernström B., Gustafsson J. A. Interactions of indoles with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Mol Pharmacol. 1985 Oct;28(4):357–363. [PubMed] [Google Scholar]
  52. Glatt H., Piée A., Pauly K., Steinbrecher T., Schrode R., Oesch F., Seidel A. Fjord- and bay-region diol-epoxides investigated for stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Cancer Res. 1991 Mar 15;51(6):1659–1667. [PubMed] [Google Scholar]
  53. Godschalk R. W., Moonen E. J., Schilderman P. A., Broekmans W. M., Kleinjans J. C., Van Schooten F. J. Exposure-route-dependent DNA adduct formation by polycyclic aromatic hydrocarbons. Carcinogenesis. 2000 Jan;21(1):87–92. [PubMed] [Google Scholar]
  54. Gonzalez F. J. Human cytochromes P450: problems and prospects. Trends Pharmacol Sci. 1992 Sep;13(9):346–352. doi: 10.1016/0165-6147(92)90107-h. [DOI] [PubMed] [Google Scholar]
  55. Granath F. N., Vaca C. E., Ehrenberg L. G., Törnqvist M. A. Cancer risk estimation of genotoxic chemicals based on target dose and a multiplicative model. Risk Anal. 1999 Apr;19(2):309–320. doi: 10.1023/a:1006933913194. [DOI] [PubMed] [Google Scholar]
  56. Granberg A. L., Brunström B., Brandt I. Cytochrome P450-dependent binding of 7,12-dimethylbenz[a]anthracene (DMBA) and benzo[a]pyrene (B[a]P) in murine heart, lung, and liver endothelial cells. Arch Toxicol. 2000 Dec;74(10):593–601. doi: 10.1007/s002040000171. [DOI] [PubMed] [Google Scholar]
  57. Grimmer G., Brune H., Deutsch-Wenzel R., Dettbarn G., Misfeld J. Contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of gasoline engine exhaust condensate evaluated by implantation into the lungs of rats. J Natl Cancer Inst. 1984 Mar;72(3):733–739. [PubMed] [Google Scholar]
  58. Grimmer G., Brune H., Deutsch-Wenzel R., Naujack K. W., Misfeld J., Timm J. On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application onto mouse skin. Cancer Lett. 1983 Nov;21(1):105–113. doi: 10.1016/0304-3835(83)90089-7. [DOI] [PubMed] [Google Scholar]
  59. Gräslund A., Jernström B. DNA-carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7,8-dihydrodiol 9,10-epoxides studied by biochemical and biophysical techniques. Q Rev Biophys. 1989 Feb;22(1):1–37. [PubMed] [Google Scholar]
  60. Guengerich F. P. The 1992 Bernard B. Brodie Award Lecture. Bioactivation and detoxication of toxic and carcinogenic chemicals. Drug Metab Dispos. 1993 Jan-Feb;21(1):1–6. [PubMed] [Google Scholar]
  61. Gustafsson L., Wall S., Larsson L. G., Skog B. Mortality and cancer incidence among Swedish dock workers--a retrospective cohort study. Scand J Work Environ Health. 1986 Feb;12(1):22–26. doi: 10.5271/sjweh.2178. [DOI] [PubMed] [Google Scholar]
  62. Gustavsson P., Plato N., Lidström E. B., Hogstedt C. Lung cancer and exposure to diesel exhaust among bus garage workers. Scand J Work Environ Health. 1990 Oct;16(5):348–354. doi: 10.5271/sjweh.1780. [DOI] [PubMed] [Google Scholar]
  63. Hanahan D., Weinberg R. A. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57–70. doi: 10.1016/s0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
  64. Hassett C., Aicher L., Sidhu J. S., Omiecinski C. J. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994 Mar;3(3):421–428. doi: 10.1093/hmg/3.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hayashi S., Watanabe J., Kawajiri K. High susceptibility to lung cancer analyzed in terms of combined genotypes of P450IA1 and Mu-class glutathione S-transferase genes. Jpn J Cancer Res. 1992 Aug;83(8):866–870. doi: 10.1111/j.1349-7006.1992.tb01992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hecht S. S., Amin S., Lin J. M., Rivenson A., Kurtzke C., el-Bayoumy K. Mammary carcinogenicity in female CD rats of a diol epoxide metabolite of fluoranthene, a commonly occurring environmental pollutant. Carcinogenesis. 1995 Jun;16(6):1433–1435. doi: 10.1093/carcin/16.6.1433. [DOI] [PubMed] [Google Scholar]
  67. Heinrich U., Roller M., Pott F. Estimation of a lifetime unit lung cancer risk for benzo(a)pyrene based on tumour rates in rats exposed to coal tar/pitch condensation aerosol. Toxicol Lett. 1994 Jun;72(1-3):155–161. doi: 10.1016/0378-4274(94)90023-x. [DOI] [PubMed] [Google Scholar]
  68. Helferich W. G., Denison M. S. Ultraviolet photoproducts of tryptophan can act as dioxin agonists. Mol Pharmacol. 1991 Nov;40(5):674–678. [PubMed] [Google Scholar]
  69. Helleberg H., Törnqvist M. A new approach for measuring protein adducts from benzo[a]pyrene diolepoxide by high performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(18):1644–1653. doi: 10.1002/1097-0231(20000930)14:18<1644::AID-RCM74>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  70. Helleberg H., Xu H., Ehrenberg L., Hemminki K., Rannug U., Törnqvist M. Studies of dose distribution, premutagenic events and mutation frequencies for benzo[a]pyrene aiming at low dose cancer risk estimation. Mutagenesis. 2001 Jul;16(4):333–337. doi: 10.1093/mutage/16.4.333. [DOI] [PubMed] [Google Scholar]
  71. Hemminki K., Pershagen G. Cancer risk of air pollution: epidemiological evidence. Environ Health Perspect. 1994 Oct;102 (Suppl 4):187–192. doi: 10.1289/ehp.94102s4187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Hemminki K., Zhang L. F., Krüger J., Autrup H., Törnqvist M., Norbeck H. E. Exposure of bus and taxi drivers to urban air pollutants as measured by DNA and protein adducts. Toxicol Lett. 1994 Jun;72(1-3):171–174. doi: 10.1016/0378-4274(94)90025-6. [DOI] [PubMed] [Google Scholar]
  73. Henderson C. J., Smith A. G., Ure J., Brown K., Bacon E. J., Wolf C. R. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5275–5280. doi: 10.1073/pnas.95.9.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Henry M. C., Port C. D., Kaufman D. G. Importance of physical properties of benzo(a)pyrene-ferric oxide mixtures in lung tumor induction. Cancer Res. 1975 Jan;35(1):207–217. [PubMed] [Google Scholar]
  75. Hess M. T., Gunz D., Luneva N., Geacintov N. E., Naegeli H. Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes. Mol Cell Biol. 1997 Dec;17(12):7069–7076. doi: 10.1128/mcb.17.12.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Higginbotham S., RamaKrishna N. V., Johansson S. L., Rogan E. G., Cavalieri E. L. Tumor-initiating activity and carcinogenicity of dibenzo[a,l]pyrene versus 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene at low doses in mouse skin. Carcinogenesis. 1993 May;14(5):875–878. doi: 10.1093/carcin/14.5.875. [DOI] [PubMed] [Google Scholar]
  77. Hoepfner I., Dettbarn G., Scherer G., Grimmer G., Adlkofer F. Hydroxy-phenanthrenes in the urine of non-smokers and smokers. Toxicol Lett. 1987 Jan;35(1):67–71. doi: 10.1016/0378-4274(87)90087-7. [DOI] [PubMed] [Google Scholar]
  78. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  79. Houlston R. S. Glutathione S-transferase M1 status and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 1999 Aug;8(8):675–682. [PubMed] [Google Scholar]
  80. Ioannides C., Parke D. V. The cytochrome P450 I gene family of microsomal hemoproteins and their role in the metabolic activation of chemicals. Drug Metab Rev. 1990;22(1):1–85. doi: 10.3109/03602539008991444. [DOI] [PubMed] [Google Scholar]
  81. Jerina D. M., Chadha A., Cheh A. M., Schurdak M. E., Wood A. W., Sayer J. M. Covalent bonding of bay-region diol epoxides to nucleic acids. Adv Exp Med Biol. 1991;283:533–553. doi: 10.1007/978-1-4684-5877-0_70. [DOI] [PubMed] [Google Scholar]
  82. Jernström B., Gräslund A. Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations and biological consequences. Biophys Chem. 1994 Apr;49(3):185–199. doi: 10.1016/0301-4622(93)e0087-l. [DOI] [PubMed] [Google Scholar]
  83. Jongeneelen F. J. Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ. 1997 Jun 20;199(1-2):141–149. doi: 10.1016/s0048-9697(97)00064-8. [DOI] [PubMed] [Google Scholar]
  84. Joseph P., Jaiswal A. K. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8413–8417. doi: 10.1073/pnas.91.18.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kawajiri K., Eguchi H., Nakachi K., Sekiya T., Yamamoto M. Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res. 1996 Jan 1;56(1):72–76. [PubMed] [Google Scholar]
  86. Kellermann G., Shaw C. R., Luyten-Kellerman M. Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N Engl J Med. 1973 Nov 1;289(18):934–937. doi: 10.1056/NEJM197311012891802. [DOI] [PubMed] [Google Scholar]
  87. Keohavong P., Melacrinos A., Shukla R. In vitro mutational spectrum of cyclopenta[cd]pyrene in the human HPRT gene. Carcinogenesis. 1995 Apr;16(4):855–860. doi: 10.1093/carcin/16.4.855. [DOI] [PubMed] [Google Scholar]
  88. Kim J. H., Stansbury K. H., Walker N. J., Trush M. A., Strickland P. T., Sutter T. R. Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998 Oct;19(10):1847–1853. doi: 10.1093/carcin/19.10.1847. [DOI] [PubMed] [Google Scholar]
  89. Kinzler K. W., Vogelstein B. Landscaping the cancer terrain. Science. 1998 May 15;280(5366):1036–1037. doi: 10.1126/science.280.5366.1036. [DOI] [PubMed] [Google Scholar]
  90. Kiyohara C., Nakanishi Y., Inutsuka S., Takayama K., Hara N., Motohiro A., Tanaka K., Kono S., Hirohata T. The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population. Pharmacogenetics. 1998 Aug;8(4):315–323. doi: 10.1097/00008571-199808000-00005. [DOI] [PubMed] [Google Scholar]
  91. Kleihues P., Doerjer G., Ehret M., Guzman J. Reaction of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene with DNA of various rat tissues in vivo. Arch Toxicol Suppl. 1980;3:237–246. doi: 10.1007/978-3-642-67389-4_18. [DOI] [PubMed] [Google Scholar]
  92. Krewski D., Thorslund T., Withey J. Carcinogenic risk assessment of complex mixtures. Toxicol Ind Health. 1989 Oct;5(5):851–867. doi: 10.1177/074823378900500520. [DOI] [PubMed] [Google Scholar]
  93. LaVoie E. J., Bedenko V., Tulley-Freiler L., Hoffmann D. Tumor-initiating activity and metabolism of polymethylated phenanthrenes. Cancer Res. 1982 Oct;42(10):4045–4049. [PubMed] [Google Scholar]
  94. LaVoie E. J., Cai Z. W., Meschter C. L., Weyand E. H. Tumorigenic activity of fluoranthene, 2-methylfluoranthene and 3-methylfluoranthene in newborn CD-1 mice. Carcinogenesis. 1994 Oct;15(10):2131–2135. doi: 10.1093/carcin/15.10.2131. [DOI] [PubMed] [Google Scholar]
  95. LaVoie E. J., Tulley-Freiler L., Bedenko V., Hoffman D. Mutagenicity, tumor-initiating activity, and metabolism of methylphenanthrenes. Cancer Res. 1981 Sep;41(9 Pt 1):3441–3447. [PubMed] [Google Scholar]
  96. Lazarus P., Sheikh S. N., Ren Q., Schantz S. P., Stern J. C., Richie J. P., Jr, Park J. Y. p53, but not p16 mutations in oral squamous cell carcinomas are associated with specific CYP1A1 and GSTM1 polymorphic genotypes and patient tobacco use. Carcinogenesis. 1998 Mar;19(3):509–514. doi: 10.1093/carcin/19.3.509. [DOI] [PubMed] [Google Scholar]
  97. Levin J. O. First international workshop on hydroxypyrene as a biomarker for PAH exposure in man--summary and conclusions. Sci Total Environ. 1995 Feb 24;163(1-3):164–168. [PubMed] [Google Scholar]
  98. Levin W., Chang R. L., Wood A. W., Thakker D. R., Yagi H., Jerina D. M., Conney A. H. Tumorigenicity of optical isomers of the diastereomeric bay-region 3,4-diol-1,2-epoxides of benzo(c)phenanthrene in murine tumor models. Cancer Res. 1986 May;46(5):2257–2261. [PubMed] [Google Scholar]
  99. Lintelmann J., Hellemann C., Kettrup A. Coupled-column high-performance liquid chromatographic method for the determination of four metabolites of polycyclic aromatic hydrocarbons, 1-, 4- and 9-hydroxyphenanthrene and 1-hydroxypyrene, in urine. J Chromatogr B Biomed Appl. 1994 Oct 3;660(1):67–73. doi: 10.1016/0378-4347(94)00267-3. [DOI] [PubMed] [Google Scholar]
  100. Lioy P. L., Waldman J. M., Greenberg A., Harkov R., Pietarinen C. The Total Human Environmental Exposure Study (THEES) to benzo(a)pyrene: comparison of the inhalation and food pathways. Arch Environ Health. 1988 Jul-Aug;43(4):304–312. doi: 10.1080/00039896.1988.10545954. [DOI] [PubMed] [Google Scholar]
  101. Lodovici M., Dolara P., Casalini C., Ciappellano S., Testolin G. Polycyclic aromatic hydrocarbon contamination in the Italian diet. Food Addit Contam. 1995 Sep-Oct;12(5):703–713. doi: 10.1080/02652039509374360. [DOI] [PubMed] [Google Scholar]
  102. Long D. J., 2nd, Waikel R. L., Wang X. J., Perlaky L., Roop D. R., Jaiswal A. K. NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res. 2000 Nov 1;60(21):5913–5915. [PubMed] [Google Scholar]
  103. Luch A., Coffing S. L., Tang Y. M., Schneider A., Soballa V., Greim H., Jefcoate C. R., Seidel A., Greenlee W. F., Baird W. M. Stable expression of human cytochrome P450 1B1 in V79 Chinese hamster cells and metabolically catalyzed DNA adduct formation of dibenzo[a,l]pyrene. Chem Res Toxicol. 1998 Jun;11(6):686–695. doi: 10.1021/tx970236p. [DOI] [PubMed] [Google Scholar]
  104. Macé K., Bowman E. D., Vautravers P., Shields P. G., Harris C. C., Pfeifer A. M. Characterisation of xenobiotic-metabolising enzyme expression in human bronchial mucosa and peripheral lung tissues. Eur J Cancer. 1998 May;34(6):914–920. doi: 10.1016/s0959-8049(98)00034-3. [DOI] [PubMed] [Google Scholar]
  105. Mass M. J., Abu-Shakra A., Roop B. C., Nelson G., Galati A. J., Stoner G. D., Nesnow S., Ross J. A. Benzo[b]fluoranthene: tumorigenicity in strain A/J mouse lungs, DNA adducts and mutations in the Ki-ras oncogene. Carcinogenesis. 1996 Aug;17(8):1701–1704. doi: 10.1093/carcin/17.8.1701. [DOI] [PubMed] [Google Scholar]
  106. Mastrangelo G., Fadda E., Marzia V. Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect. 1996 Nov;104(11):1166–1170. doi: 10.1289/ehp.961041166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  108. Murata M., Shiraishi T., Fukutome K., Watanabe M., Nagao M., Kubota Y., Ito H., Kawamura J., Yatani R. Cytochrome P4501A1 and glutathione S-transferase M1 genotypes as risk factors for prostate cancer in Japan. Jpn J Clin Oncol. 1998 Nov;28(11):657–660. doi: 10.1093/jjco/28.11.657. [DOI] [PubMed] [Google Scholar]
  109. Naylor S., Gan L. S., Day B. W., Pastorelli R., Skipper P. L., Tannenbaum S. R. Benzo[a]pyrene diol epoxide adduct formation in mouse and human hemoglobin: physicochemical basis for dosimetry. Chem Res Toxicol. 1990 Mar-Apr;3(2):111–117. doi: 10.1021/tx00014a005. [DOI] [PubMed] [Google Scholar]
  110. Nebert D. W., Puga A., Vasiliou V. Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction. Ann N Y Acad Sci. 1993 Jun 23;685:624–640. doi: 10.1111/j.1749-6632.1993.tb35928.x. [DOI] [PubMed] [Google Scholar]
  111. Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. doi: 10.1097/00008571-199602000-00002. [DOI] [PubMed] [Google Scholar]
  112. Ng K. M., Chu I., Bronaugh R. L., Franklin C. A., Somers D. A. Percutaneous absorption/metabolism of phenanthrene in the hairless guinea pig: comparison of in vitro and in vivo results. Fundam Appl Toxicol. 1991 Apr;16(3):517–524. doi: 10.1016/0272-0590(91)90092-i. [DOI] [PubMed] [Google Scholar]
  113. Nisbet I. C., LaGoy P. K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 1992 Dec;16(3):290–300. doi: 10.1016/0273-2300(92)90009-x. [DOI] [PubMed] [Google Scholar]
  114. Nordqvist M., Thakker D. R., Vyas K. P., Yagi H., Levin W., Ryan D. E., Thomas P. E., Conney A. H., Jerina D. M. Metabolism of chrysene and phenanthrene to bay-region diol epoxides by rat liver enzymes. Mol Pharmacol. 1981 Jan;19(1):168–178. [PubMed] [Google Scholar]
  115. Okey A. B., Riddick D. S., Harper P. A. Molecular biology of the aromatic hydrocarbon (dioxin) receptor. Trends Pharmacol Sci. 1994 Jul;15(7):226–232. doi: 10.1016/0165-6147(94)90316-6. [DOI] [PubMed] [Google Scholar]
  116. Ooi S. G., Jernström B., Ahokas J. Effects of microsomes and liposomes on glutathione transferase catalysed conjugation of benzo[a]pyrene diol epoxide with glutathione. Chem Biol Interact. 1994 Apr;91(1):15–27. doi: 10.1016/0009-2797(94)90003-5. [DOI] [PubMed] [Google Scholar]
  117. Ozbal C. C., Skipper P. L., Yu M. C., London S. J., Dasari R. R., Tannenbaum S. R. Quantification of (7S,8R)-dihydroxy-(9R,10S)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene adducts in human serum albumin by laser-induced fluorescence: implications for the in vivo metabolism of benzo[a]pyrene. Cancer Epidemiol Biomarkers Prev. 2000 Jul;9(7):733–739. [PubMed] [Google Scholar]
  118. Pastorelli R., Restano J., Guanci M., Maramonte M., Magagnotti C., Allevi R., Lauri D., Fanelli R., Airoldi L. Hemoglobin adducts of benzo[a]pyrene diolepoxide in newspaper vendors: association with traffic exhaust. Carcinogenesis. 1996 Nov;17(11):2389–2394. doi: 10.1093/carcin/17.11.2389. [DOI] [PubMed] [Google Scholar]
  119. Perdew G. H., Babbs C. F. Production of Ah receptor ligands in rat fecal suspensions containing tryptophan or indole-3-carbinol. Nutr Cancer. 1991;16(3-4):209–218. doi: 10.1080/01635589109514159. [DOI] [PubMed] [Google Scholar]
  120. Perera F. P., Hemminki K., Gryzbowska E., Motykiewicz G., Michalska J., Santella R. M., Young T. L., Dickey C., Brandt-Rauf P., De Vivo I. Molecular and genetic damage in humans from environmental pollution in Poland. Nature. 1992 Nov 19;360(6401):256–258. doi: 10.1038/360256a0. [DOI] [PubMed] [Google Scholar]
  121. Peters J. M., Wiley L. M. Evidence that murine preimplantation embryos express aryl hydrocarbon receptor. Toxicol Appl Pharmacol. 1995 Oct;134(2):214–221. doi: 10.1006/taap.1995.1186. [DOI] [PubMed] [Google Scholar]
  122. Petruska J. M., Mosebrook D. R., Jakab G. J., Trush M. A. Myeloperoxidase-enhanced formation of (+-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene-DNA adducts in lung tissue in vitro: a role of pulmonary inflammation in the bioactivation of a procarcinogen. Carcinogenesis. 1992 Jul;13(7):1075–1081. doi: 10.1093/carcin/13.7.1075. [DOI] [PubMed] [Google Scholar]
  123. Petry T., Schmid P., Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere. 1996 Feb;32(4):639–648. doi: 10.1016/0045-6535(95)00348-7. [DOI] [PubMed] [Google Scholar]
  124. Phillips D. H. Fifty years of benzo(a)pyrene. Nature. 1983 Jun 9;303(5917):468–472. doi: 10.1038/303468a0. [DOI] [PubMed] [Google Scholar]
  125. Phillips D. H., Grover P. L. Polycyclic hydrocarbon activation: bay regions and beyond. Drug Metab Rev. 1994;26(1-2):443–467. doi: 10.3109/03602539409029808. [DOI] [PubMed] [Google Scholar]
  126. Poland A., Palen D., Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature. 1982 Nov 18;300(5889):271–273. doi: 10.1038/300271a0. [DOI] [PubMed] [Google Scholar]
  127. Przygodzki R. M., Bennett W. P., Guinee D. G., Jr, Khan M. A., Freedman A., Shields P. G., Travis W. D., Jett J. R., Tazelaar H., Pairolero P. p53 mutation spectrum in relation to GSTM1, CYP1A1 and CYP2E1 in surgically treated patients with non-small cell lung cancer. Pharmacogenetics. 1998 Dec;8(6):503–511. doi: 10.1097/00008571-199812000-00007. [DOI] [PubMed] [Google Scholar]
  128. Rannug A., Rannug U., Rosenkranz H. S., Winqvist L., Westerholm R., Agurell E., Grafström A. K. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J Biol Chem. 1987 Nov 15;262(32):15422–15427. [PubMed] [Google Scholar]
  129. Rannug U., Rannug A., Sjöberg U., Li H., Westerholm R., Bergman J. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol. 1995 Dec;2(12):841–845. doi: 10.1016/1074-5521(95)90090-x. [DOI] [PubMed] [Google Scholar]
  130. Rannug U., Sjögren M., Rannug A., Gillner M., Toftgård R., Gustafsson J. A., Rosenkranz H., Klopman G. Use of artificial intelligence in structure-affinity correlations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) receptor ligands. Carcinogenesis. 1991 Nov;12(11):2007–2015. doi: 10.1093/carcin/12.11.2007. [DOI] [PubMed] [Google Scholar]
  131. Rojas M., Alexandrov K., Cascorbi I., Brockmöller J., Likhachev A., Pozharisski K., Bouvier G., Auburtin G., Mayer L., Kopp-Schneider A. High benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals with combined CYP1A1 MspI/Msp-GSTM1*0/*0 genotypes. Pharmacogenetics. 1998 Apr;8(2):109–118. [PubMed] [Google Scholar]
  132. Rojas M., Alexandrov K., van Schooten F. J., Hillebrand M., Kriek E., Bartsch H. Validation of a new fluorometric assay for benzo[a]pyrene diolepoxide-DNA adducts in human white blood cells: comparisons with 32P-postlabeling and ELISA. Carcinogenesis. 1994 Mar;15(3):557–560. doi: 10.1093/carcin/15.3.557. [DOI] [PubMed] [Google Scholar]
  133. Rojas M., Cascorbi I., Alexandrov K., Kriek E., Auburtin G., Mayer L., Kopp-Schneider A., Roots I., Bartsch H. Modulation of benzo[a]pyrene diolepoxide-DNA adduct levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism. Carcinogenesis. 2000 Jan;21(1):35–41. doi: 10.1093/carcin/21.1.35. [DOI] [PubMed] [Google Scholar]
  134. Rojas M., Godschalk R., Alexandrov K., Cascorbi I., Kriek E., Ostertag J., Van Schooten F. J., Bartsch H. Myeloperoxidase--463A variant reduces benzo[a]pyrene diol epoxide DNA adducts in skin of coal tar treated patients. Carcinogenesis. 2001 Jul;22(7):1015–1018. doi: 10.1093/carcin/22.7.1015. [DOI] [PubMed] [Google Scholar]
  135. Saarikoski S. T., Husgafvel-Pursiainen K., Hirvonen A., Vainio H., Gonzalez F. J., Anttila S. Localization of CYP1A1 mRNA in human lung by in situ hybridization: comparison with immunohistochemical findings. Int J Cancer. 1998 Jul 3;77(1):33–39. doi: 10.1002/(sici)1097-0215(19980703)77:1<33::aid-ijc7>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  136. Saffiotti U., Montesano R., Sellakumar A. R., Kaufman D. G. Respiratory tract carcinogenesis induced in hamsters by different dose levels of benzo-(a)pyrene and ferric oxide. J Natl Cancer Inst. 1972 Oct;49(4):1199–1204. [PubMed] [Google Scholar]
  137. Scarpato R., Hirvonen A., Migliore L., Falck G., Norppa H. Influence of GSTM1 and GSTT1 polymorphisms on the frequency of chromosome aberrations in lymphocytes of smokers and pesticide-exposed greenhouse workers. Mutat Res. 1997 Mar 17;389(2-3):227–235. doi: 10.1016/s1383-5718(96)00152-0. [DOI] [PubMed] [Google Scholar]
  138. Sherson D., Sabro P., Sigsgaard T., Johansen F., Autrup H. Biological monitoring of foundry workers exposed to polycyclic aromatic hydrocarbons. Br J Ind Med. 1990 Jul;47(7):448–453. doi: 10.1136/oem.47.7.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Sims P., Grover P. L. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv Cancer Res. 1974;20:165–274. doi: 10.1016/s0065-230x(08)60111-6. [DOI] [PubMed] [Google Scholar]
  140. Sjögren M., Ehrenberg L., Rannug U. Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutat Res. 1996 Oct 28;358(1):97–112. doi: 10.1016/0027-5107(96)00175-3. [DOI] [PubMed] [Google Scholar]
  141. Sjögren M., Li H., Banner C., Rafter J., Westerholm R., Rannug U. Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels. Chem Res Toxicol. 1996 Jan-Feb;9(1):197–207. doi: 10.1021/tx950095w. [DOI] [PubMed] [Google Scholar]
  142. Skipper P. L., Naylor S., Gan L. S., Day B. W., Pastorelli R., Tannenbaum S. R. Origin of tetrahydrotetrols derived from human hemoglobin adducts of benzo[a]pyrene. Chem Res Toxicol. 1989 Sep-Oct;2(5):280–281. doi: 10.1021/tx00011a002. [DOI] [PubMed] [Google Scholar]
  143. Smith L. E., Denissenko M. F., Bennett W. P., Li H., Amin S., Tang M., Pfeifer G. P. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 2000 May 17;92(10):803–811. doi: 10.1093/jnci/92.10.803. [DOI] [PubMed] [Google Scholar]
  144. Stoilov I., Akarsu A. N., Alozie I., Child A., Barsoum-Homsy M., Turacli M. E., Or M., Lewis R. A., Ozdemir N., Brice G. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998 Mar;62(3):573–584. doi: 10.1086/301764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Sundberg K., Johansson A. S., Stenberg G., Widersten M., Seidel A., Mannervik B., Jernström B. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998 Mar;19(3):433–436. doi: 10.1093/carcin/19.3.433. [DOI] [PubMed] [Google Scholar]
  146. Sundberg K., Seidel A., Mannervik B., Jernström B. Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Lett. 1998 Nov 6;438(3):206–210. doi: 10.1016/s0014-5793(98)01291-5. [DOI] [PubMed] [Google Scholar]
  147. Sundberg K., Widersten M., Seidel A., Mannervik B., Jernström B. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chem Res Toxicol. 1997 Nov;10(11):1221–1227. doi: 10.1021/tx970099w. [DOI] [PubMed] [Google Scholar]
  148. Szyfter K., Hemminki K., Szyfter W., Szmeja Z., Banaszewski J., Yang K. Aromatic DNA adducts in larynx biopsies and leukocytes. Carcinogenesis. 1994 Oct;15(10):2195–2199. doi: 10.1093/carcin/15.10.2195. [DOI] [PubMed] [Google Scholar]
  149. Tang D., Santella R. M., Blackwood A. M., Young T. L., Mayer J., Jaretzki A., Grantham S., Tsai W. Y., Perera F. P. A molecular epidemiological case-control study of lung cancer. Cancer Epidemiol Biomarkers Prev. 1995 Jun;4(4):341–346. [PubMed] [Google Scholar]
  150. Tas S., Buchet J. P., Lauwerys R. Determinants of benzo[a]pyrene diol epoxide adducts to albumin in workers exposed to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health. 1994;66(5):343–348. doi: 10.1007/BF00378368. [DOI] [PubMed] [Google Scholar]
  151. Thyssen J., Althoff J., Kimmerle G., Mohr U. Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J Natl Cancer Inst. 1981 Mar;66(3):575–577. [PubMed] [Google Scholar]
  152. Tuominen Rainer, Baranczewski Pawel, Warholm Margareta, Hagmar Lars, Möller Lennart, Rannug Agneta. Susceptibility factors and DNA adducts in peripheral blood mononuclear cells of aluminium smelter workers exposed to polycyclic aromatic hydrocarbons. Arch Toxicol. 2002 Mar 7;76(3):178–186. doi: 10.1007/s00204-002-0331-0. [DOI] [PubMed] [Google Scholar]
  153. Törnqvist M., Ehrenberg L. On cancer risk estimation of urban air pollution. Environ Health Perspect. 1994 Oct;102 (Suppl 4):173–182. doi: 10.1289/ehp.102-1566917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Upham B. L., Weis L. M., Rummel A. M., Masten S. J., Trosko J. E. The effects of anthracene and methylated anthracenes on gap junctional intercellular communication in rat liver epithelial cells. Fundam Appl Toxicol. 1996 Dec;34(2):260–264. doi: 10.1006/faat.1996.0195. [DOI] [PubMed] [Google Scholar]
  155. Vaca C., Törnqvist M., Rannug U., Lindahl-Kiessling K., Ahnström G., Ehrenberg L. On the bioactivation and genotoxic action of fluoranthene. Arch Toxicol. 1992;66(8):538–545. doi: 10.1007/BF01973383. [DOI] [PubMed] [Google Scholar]
  156. Viau C., Mercier M., Blondin O. Measurement of hemoglobin and albumin adducts of benzo(a)pyrenediolepoxide and their rate of elimination in the female Sprague-Dawley rat. Arch Toxicol. 1993;67(7):468–472. doi: 10.1007/BF01969917. [DOI] [PubMed] [Google Scholar]
  157. Vineis P., d'Errico A., Malats N., Boffetta P. Overall evaluation and research perspectives. IARC Sci Publ. 1999;(148):403–408. [PubMed] [Google Scholar]
  158. Wall K. L., Gao W. S., te Koppele J. M., Kwei G. Y., Kauffman F. C., Thurman R. G. The liver plays a central role in the mechanism of chemical carcinogenesis due to polycyclic aromatic hydrocarbons. Carcinogenesis. 1991 May;12(5):783–786. doi: 10.1093/carcin/12.5.783. [DOI] [PubMed] [Google Scholar]
  159. Wang J. S., Busby W. F., Jr Induction of lung and liver tumors by fluoranthene in a preweanling CD-1 mouse bioassay. Carcinogenesis. 1993 Sep;14(9):1871–1874. doi: 10.1093/carcin/14.9.1871. [DOI] [PubMed] [Google Scholar]
  160. Wedlund P. J., Kimura S., Gonzalez F. J., Nebert D. W. 1462V mutation in the human CYP1A1 gene: lack of correlation with either the Msp I 1.9 kb (M2) allele or CYP1A1 inducibility in a three-generation family of east Mediterranean descent. Pharmacogenetics. 1994 Feb;4(1):21–26. [PubMed] [Google Scholar]
  161. Wei S. J., Chang R. L., Bhachech N., Cui X. X., Merkler K. A., Wong C. Q., Hennig E., Yagi H., Jerina D. M., Conney A. H. Dose-dependent differences in the profile of mutations induced by (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase gene in Chinese hamster V-79 cells. Cancer Res. 1993 Jul 15;53(14):3294–3301. [PubMed] [Google Scholar]
  162. Wei S. J., Chang R. L., Hennig E., Cui X. X., Merkler K. A., Wong C. Q., Yagi H., Jerina D. M., Conney A. H. Mutagenic selectivity at the HPRT locus in V-79 cells: comparison of mutations caused by bay-region benzo[a]pyrene 7,8-diol-9,-10-epoxide enantiomers with high and low carcinogenic activity. Carcinogenesis. 1994 Aug;15(8):1729–1735. doi: 10.1093/carcin/15.8.1729. [DOI] [PubMed] [Google Scholar]
  163. Weis L. M., Rummel A. M., Masten S. J., Trosko J. E., Upham B. L. Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication. Environ Health Perspect. 1998 Jan;106(1):17–22. doi: 10.1289/ehp.9810617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Whyatt R. M., Perera F. P., Jedrychowski W., Santella R. M., Garte S., Bell D. A. Association between polycyclic aromatic hydrocarbon-DNA adduct levels in maternal and newborn white blood cells and glutathione S-transferase P1 and CYP1A1 polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000 Feb;9(2):207–212. [PubMed] [Google Scholar]
  165. Wiencke J. K., Kelsey K. T., Varkonyi A., Semey K., Wain J. C., Mark E., Christiani D. C. Correlation of DNA adducts in blood mononuclear cells with tobacco carcinogen-induced damage in human lung. Cancer Res. 1995 Nov 1;55(21):4910–4914. [PubMed] [Google Scholar]
  166. Wiersma D. A., Roth R. A. The prediction of benzo[a]pyrene clearance by rat liver and lung from enzyme kinetic data. Mol Pharmacol. 1983 Sep;24(2):300–308. [PubMed] [Google Scholar]
  167. Wood A. W., Chang R. L., Levin W., Thakker D. R., Yagi H., Sayer J. M., Jerina D. M., Conney A. H. Mutagenicity of the enantiomers of the diastereomeric bay-region benzo(c)phenanthrene 3,4-diol-1,2-epoxides in bacterial and mammalian cells. Cancer Res. 1984 Jun;44(6):2320–2324. [PubMed] [Google Scholar]
  168. Zeisig M., Möller L. 32P-Postlabeling high-performance liquid chromatographic improvements to characterize DNA adduct stereoisomers from benzo[a]pyrene and benzo[c]phenanthrene, and to separate DNA adducts from 7,12-dimethylbenz[a]anthracene. J Chromatogr B Biomed Sci Appl. 1997 Apr 11;691(2):341–350. doi: 10.1016/s0378-4347(96)00444-6. [DOI] [PubMed] [Google Scholar]
  169. de Vos R. H., van Dokkum W., Schouten A., de Jong-Berkhout P. Polycyclic aromatic hydrocarbons in Dutch total diet samples (1984-1986). Food Chem Toxicol. 1990 Apr;28(4):263–268. doi: 10.1016/0278-6915(90)90038-o. [DOI] [PubMed] [Google Scholar]
  170. van Poppel G., de Vogel N., van Balderen P. J., Kok F. J. Increased cytogenetic damage in smokers deficient in glutathione S-transferase isozyme mu. Carcinogenesis. 1992 Feb;13(2):303–305. doi: 10.1093/carcin/13.2.303. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES