Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):689–694. doi: 10.1289/ehp.02110s5689

Transport of toxic metals by molecular mimicry.

Nazzareno Ballatori 1
PMCID: PMC1241226  PMID: 12426113

Abstract

Intracellular concentrations of essential metals are normally maintained within a narrow range, whereas the nonessential metals generally lack homeostatic controls. Some of the factors that contribute to metal homeostasis have recently been identified at the molecular level and include proteins that mediate import of essential metals from the extracellular environment, those that regulate delivery to specific intracellular proteins or compartments, and those that mediate metal export from the cell. Some of these proteins appear highly selective for a given essential metal; however, others are less specific and interact with multiple metals, including toxic metals. For example, DCT1 (divalent cation transporter-1; also known as NRAMP2 or DMT1) is considered to be a major cellular uptake mechanism for Fe(2+) and other essential divalent metals, but this protein also mediates uptake of Cd(2+), Pb(2+), and possibly of other toxic divalent metals. The ability of nonessential metals to interact with binding sites for essential metals is critical for their ability to gain access to specific cellular compartments and for their ability to disrupt normal biochemical or physiological functions. Another major mechanism by which metals traverse cell membranes and produce cell injury is by forming complexes whose overall structures mimic those of endogenous molecules. For example, it has long been known that arsenate and vanadate can compete with phosphate for transport and metabolism, thereby disrupting normal cellular functions. Similarly, cromate and molybdate can mimic sulfate in biological systems. Studies in our laboratory have focused on the transport and toxicity of methylmercury (MeHg) and inorganic mercury. Mercury has a high affinity for reduced sulfhydryl groups, including those of cysteine and glutathione (GSH). MeHg-l-cysteine is structurally similar to the amino acid methionine, and this complex is a substrate for transport systems that carry methionine across cell membranes. Once MeHg has entered the cell, some of it binds to GSH, and the resulting MeHg-glutathione complex appears to be a substrate for proteins that mediate cellular export of glutathione S-conjugates, including the apically located MRP2 (multidrug resistance-associated protein 2) transporter, a member of the adenosine triphosphate-binding cassette protein superfamily. Because other toxic metals also form complexes with endogenous molecules, comparable mechanisms may be involved in their membrane transport and disposition.

Full Text

The Full Text of this article is available as a PDF (155.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000 Jun 30;275(26):19906–19912. doi: 10.1074/jbc.M000713200. [DOI] [PubMed] [Google Scholar]
  2. Aiken S. P., Horn N. M., Saunders N. R. Effects of amino acids on zinc transport in rat erythrocytes. J Physiol. 1992 Jan;445:69–80. doi: 10.1113/jphysiol.1992.sp018912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aisen P., Enns C., Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001 Oct;33(10):940–959. doi: 10.1016/s1357-2725(01)00063-2. [DOI] [PubMed] [Google Scholar]
  4. Atkinson P. G., Blackwell J. M., Barton C. H. Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem J. 1997 Aug 1;325(Pt 3):779–786. doi: 10.1042/bj3250779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballatori N., Clarkson T. W. Developmental changes in the biliary excretion of methylmercury and glutathione. Science. 1982 Apr 2;216(4541):61–63. doi: 10.1126/science.7063871. [DOI] [PubMed] [Google Scholar]
  6. Ballatori N., Gatmaitan Z., Truong A. T. Impaired biliary excretion and whole body elimination of methylmercury in rats with congenital defect in biliary glutathione excretion. Hepatology. 1995 Nov;22(5):1469–1473. [PubMed] [Google Scholar]
  7. Ballatori N. Glutathione mercaptides as transport forms of metals. Adv Pharmacol. 1994;27:271–298. doi: 10.1016/s1054-3589(08)61036-4. [DOI] [PubMed] [Google Scholar]
  8. Ballatori N. Mechanisms of metal transport across liver cell plasma membranes. Drug Metab Rev. 1991;23(1-2):83–132. doi: 10.3109/03602539109029757. [DOI] [PubMed] [Google Scholar]
  9. Beck L., Silve C. Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int. 2001 Mar;59(3):835–845. doi: 10.1046/j.1523-1755.2001.059003835.x. [DOI] [PubMed] [Google Scholar]
  10. Broeks A., Gerrard B., Allikmets R., Dean M., Plasterk R. H. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J. 1996 Nov 15;15(22):6132–6143. [PMC free article] [PubMed] [Google Scholar]
  11. Bull P. C., Cox D. W. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 1994 Jul;10(7):246–252. doi: 10.1016/0168-9525(94)90172-4. [DOI] [PubMed] [Google Scholar]
  12. Callahan H. L., Beverley S. M. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem. 1991 Oct 5;266(28):18427–18430. [PubMed] [Google Scholar]
  13. Cellier M., Privé G., Belouchi A., Kwan T., Rodrigues V., Chia W., Gros P. Nramp defines a family of membrane proteins. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10089–10093. doi: 10.1073/pnas.92.22.10089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen Z. S., Mutoh M., Sumizawa T., Furukawa T., Haraguchi M., Tani A., Akiyama S. Reversal of heavy metal resistance in multidrug-resistant human KB carcinoma cells. Biochem Biophys Res Commun. 1997 Jul 30;236(3):586–590. doi: 10.1006/bbrc.1997.7015. [DOI] [PubMed] [Google Scholar]
  15. Chong S. S., Kristjansson K., Zoghbi H. Y., Hughes M. R. Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23. Genomics. 1993 Nov;18(2):355–359. doi: 10.1006/geno.1993.1476. [DOI] [PubMed] [Google Scholar]
  16. Clarkson T. W. Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol. 1993;33:545–571. doi: 10.1146/annurev.pa.33.040193.002553. [DOI] [PubMed] [Google Scholar]
  17. Cousins R. J., McMahon R. J. Integrative aspects of zinc transporters. J Nutr. 2000 May;130(5S):1384S–1387S. doi: 10.1093/jn/130.5.1384S. [DOI] [PubMed] [Google Scholar]
  18. Crofts J. N., Barritt G. J. The liver cell plasma membrane Ca2+ inflow systems exhibit a broad specificity for divalent metal ions. Biochem J. 1990 Aug 1;269(3):579–587. doi: 10.1042/bj2690579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Deeley R. G., Cole S. P. Function, evolution and structure of multidrug resistance protein (MRP). Semin Cancer Biol. 1997 Jun;8(3):193–204. doi: 10.1006/scbi.1997.0070. [DOI] [PubMed] [Google Scholar]
  20. Dierick H. A., Adam A. N., Escara-Wilke J. F., Glover T. W. Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Golgi network. Hum Mol Genet. 1997 Mar;6(3):409–416. doi: 10.1093/hmg/6.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
  22. Dutczak W. J., Ballatori N. Transport of the glutathione-methylmercury complex across liver canalicular membranes on reduced glutathione carriers. J Biol Chem. 1994 Apr 1;269(13):9746–9751. [PubMed] [Google Scholar]
  23. Eide D. J. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol. 2000;43:1–38. doi: 10.1016/s0065-2911(00)43001-8. [DOI] [PubMed] [Google Scholar]
  24. Ferguson C. J., Wareing M., Ward D. T., Green R., Smith C. P., Riccardi D. Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am J Physiol Renal Physiol. 2001 May;280(5):F803–F814. doi: 10.1152/ajprenal.2001.280.5.F803. [DOI] [PubMed] [Google Scholar]
  25. Fleming M. D., Trenor C. C., 3rd, Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997 Aug;16(4):383–386. doi: 10.1038/ng0897-383. [DOI] [PubMed] [Google Scholar]
  26. Gaither L. A., Eide D. J. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000 Feb 25;275(8):5560–5564. doi: 10.1074/jbc.275.8.5560. [DOI] [PubMed] [Google Scholar]
  27. Gaither L. A., Eide D. J. The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem. 2001 Apr 11;276(25):22258–22264. doi: 10.1074/jbc.M101772200. [DOI] [PubMed] [Google Scholar]
  28. Guerinot M. L. The ZIP family of metal transporters. Biochim Biophys Acta. 2000 May 1;1465(1-2):190–198. doi: 10.1016/s0005-2736(00)00138-3. [DOI] [PubMed] [Google Scholar]
  29. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  30. Hernando N., Forster I. C., Biber J., Murer H. Molecular characteristics of phosphate transporters and their regulation. Exp Nephrol. 2000 Nov-Dec;8(6):366–375. doi: 10.1159/000020691. [DOI] [PubMed] [Google Scholar]
  31. Hinkle P. M., Kinsella P. A., Osterhoudt K. C. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem. 1987 Dec 5;262(34):16333–16337. [PubMed] [Google Scholar]
  32. Horn N. M., Thomas A. L., Tompkins J. D. The effect of histidine and cysteine on zinc influx into rat and human erythrocytes. J Physiol. 1995 Nov 15;489(Pt 1):73–80. doi: 10.1113/jphysiol.1995.sp021031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Huang L., Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997 Nov;17(3):292–297. doi: 10.1038/ng1197-292. [DOI] [PubMed] [Google Scholar]
  34. Hughes B. P., Barritt G. J. Inhibition of the liver cell receptor-activated Ca2+ inflow system by metal ion inhibitors of voltage-operated Ca2+ channels but not by other inhibitors of Ca2+ inflow. Biochim Biophys Acta. 1989 Oct 9;1013(3):197–205. doi: 10.1016/0167-4889(89)90135-3. [DOI] [PubMed] [Google Scholar]
  35. Ishikawa T., Bao J. J., Yamane Y., Akimaru K., Frindrich K., Wright C. D., Kuo M. T. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem. 1996 Jun 21;271(25):14981–14988. doi: 10.1074/jbc.271.25.14981. [DOI] [PubMed] [Google Scholar]
  36. Jennette K. W. The role of metals in carcinogenesis: biochemistry and metabolism. Environ Health Perspect. 1981 Aug;40:233–252. doi: 10.1289/ehp.8140233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Joshi J. G., Sczekan S. R., Fleming J. T. Ferritin--a general metal detoxicant. Biol Trace Elem Res. 1989 Jul-Sep;21:105–110. doi: 10.1007/BF02917242. [DOI] [PubMed] [Google Scholar]
  38. Kajiwara Y., Yasutake A., Adachi T., Hirayama K. Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol. 1996;70(5):310–314. doi: 10.1007/s002040050279. [DOI] [PubMed] [Google Scholar]
  39. Kaplan J., O'Halloran T. V. Iron metabolism in eukaryotes: Mars and Venus at it again. Science. 1996 Mar 15;271(5255):1510–1512. doi: 10.1126/science.271.5255.1510. [DOI] [PubMed] [Google Scholar]
  40. Kavanaugh M. P., Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 1996 Apr;49(4):959–963. doi: 10.1038/ki.1996.135. [DOI] [PubMed] [Google Scholar]
  41. Kerper L. E., Ballatori N., Clarkson T. W. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol. 1992 May;262(5 Pt 2):R761–R765. doi: 10.1152/ajpregu.1992.262.5.R761. [DOI] [PubMed] [Google Scholar]
  42. Kuo Y. M., Gitschier J., Packman S. Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum Mol Genet. 1997 Jul;6(7):1043–1049. doi: 10.1093/hmg/6.7.1043. [DOI] [PubMed] [Google Scholar]
  43. Kuo Y. M., Zhou B., Cosco D., Gitschier J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6836–6841. doi: 10.1073/pnas.111057298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. LeSage G. D., Kost L. J., Barham S. S., LaRusso N. F. Biliary excretion of iron from hepatocyte lysosomes in the rat. A major excretory pathway in experimental iron overload. J Clin Invest. 1986 Jan;77(1):90–97. doi: 10.1172/JCI112307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lee J., Prohaska J. R., Thiele D. J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6842–6847. doi: 10.1073/pnas.111058698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Liuzzi J. P., Blanchard R. K., Cousins R. J. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr. 2001 Jan;131(1):46–52. doi: 10.1093/jn/131.1.46. [DOI] [PubMed] [Google Scholar]
  47. Markovich D., Forgo J., Stange G., Biber J., Murer H. Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8073–8077. doi: 10.1073/pnas.90.17.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Markovich D. Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. Eur J Cell Biol. 2000 Aug;79(8):531–538. doi: 10.1078/0171-9335-00076. [DOI] [PubMed] [Google Scholar]
  49. McKie A. T., Barrow D., Latunde-Dada G. O., Rolfs A., Sager G., Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 2001 Feb 1;291(5509):1755–1759. doi: 10.1126/science.1057206. [DOI] [PubMed] [Google Scholar]
  50. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000 Feb;5(2):299–309. doi: 10.1016/s1097-2765(00)80425-6. [DOI] [PubMed] [Google Scholar]
  51. Meneton P., Oh Y. S., Warnock D. G. Genetic renal tubular disorders of renal ion channels and transporters. Semin Nephrol. 2001 Mar;21(2):81–93. doi: 10.1053/snep.2001.21210. [DOI] [PubMed] [Google Scholar]
  52. Miyamoto K., Tatsumi S., Sonoda T., Yamamoto H., Minami H., Taketani Y., Takeda E. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J. 1995 Jan 1;305(Pt 1):81–85. doi: 10.1042/bj3050081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Mokrzan E. M., Kerper L. E., Ballatori N., Clarkson T. W. Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L. J Pharmacol Exp Ther. 1995 Mar;272(3):1277–1284. [PubMed] [Google Scholar]
  54. Møller L. B., Petersen C., Lund C., Horn N. Characterization of the hCTR1 gene: genomic organization, functional expression, and identification of a highly homologous processed gene. Gene. 2000 Oct 17;257(1):13–22. doi: 10.1016/s0378-1119(00)00394-2. [DOI] [PubMed] [Google Scholar]
  55. Nagano K., Nakamura K., Urakami K. I., Umeyama K., Uchiyama H., Koiwai K., Hattori S., Yamamoto T., Matsuda I., Endo F. Intracellular distribution of the Wilson's disease gene product (ATPase7B) after in vitro and in vivo exogenous expression in hepatocytes from the LEC rat, an animal model of Wilson's disease. Hepatology. 1998 Mar;27(3):799–807. doi: 10.1002/hep.510270323. [DOI] [PubMed] [Google Scholar]
  56. Olivi L., Sisk J., Bressler J. Involvement of DMT1 in uptake of Cd in MDCK cells: role of protein kinase C. Am J Physiol Cell Physiol. 2001 Sep;281(3):C793–C800. doi: 10.1152/ajpcell.2001.281.3.C793. [DOI] [PubMed] [Google Scholar]
  57. Osterloh K., Aisen P. Pathways in the binding and uptake of ferritin by hepatocytes. Biochim Biophys Acta. 1989 Mar 28;1011(1):40–45. doi: 10.1016/0167-4889(89)90075-x. [DOI] [PubMed] [Google Scholar]
  58. Palmiter R. D., Cole T. B., Findley S. D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996 Apr 15;15(8):1784–1791. [PMC free article] [PubMed] [Google Scholar]
  59. Palmiter R. D., Cole T. B., Quaife C. J., Findley S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14934–14939. doi: 10.1073/pnas.93.25.14934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Palmiter R. D., Findley S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995 Feb 15;14(4):639–649. doi: 10.1002/j.1460-2075.1995.tb07042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Paulsen I. T., Saier M. H., Jr A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol. 1997 Mar 15;156(2):99–103. doi: 10.1007/s002329900192. [DOI] [PubMed] [Google Scholar]
  62. Regoeczi E., Chindemi P. A. Translocation of different forms of transferrin from blood to bile in the rat. Hepatology. 1995 Apr;21(4):1063–1069. [PubMed] [Google Scholar]
  63. Roelofsen H., Wolters H., Van Luyn M. J., Miura N., Kuipers F., Vonk R. J. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology. 2000 Sep;119(3):782–793. doi: 10.1053/gast.2000.17834. [DOI] [PubMed] [Google Scholar]
  64. Rolfs Andreas, Hediger Matthias A. Intestinal metal ion absorption: an update. Curr Opin Gastroenterol. 2001 Mar;17(2):177–183. doi: 10.1097/00001574-200103000-00014. [DOI] [PubMed] [Google Scholar]
  65. Roy C. N., Andrews N. C. Recent advances in disorders of iron metabolism: mutations, mechanisms and modifiers. Hum Mol Genet. 2001 Oct 1;10(20):2181–2186. doi: 10.1093/hmg/10.20.2181. [DOI] [PubMed] [Google Scholar]
  66. Sharma V., Crankshaw C. L., Piwnica-Worms D. Effects of multidrug resistance (MDR1) P-glycoprotein expression levels and coordination metal on the cytotoxic potency of multidentate (N4O2) (ethylenediamine)bis[propyl(R-benzylimino)]metal(III) cations. J Med Chem. 1996 Aug 30;39(18):3483–3490. doi: 10.1021/jm950823c. [DOI] [PubMed] [Google Scholar]
  67. Simons T. J., Pocock G. Lead enters bovine adrenal medullary cells through calcium channels. J Neurochem. 1987 Feb;48(2):383–389. doi: 10.1111/j.1471-4159.1987.tb04105.x. [DOI] [PubMed] [Google Scholar]
  68. Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
  69. Sugawara N., Lai Y. R., Arizono K., Kitajima T., Inoue H. Lack of biliary excretion of Cd linked to an inherent defect of the canalicular isoform of multidrug resistance protein (cMrp) does not abnormally stimulate accumulation of Cd in the Eisai hyperbilirubinemic (EHB) rat liver. Arch Toxicol. 1997;71(5):336–339. doi: 10.1007/s002040050395. [DOI] [PubMed] [Google Scholar]
  70. Sugawara N., Lai Y. R., Sugaware C., Arizono K. Decreased hepatobiliary secretion of inorganic mercury, its deposition and toxicity in the Eisai hyperbilirubinemic rat with no hepatic canalicular organic anion transporter. Toxicology. 1998 Feb 20;126(1):23–31. doi: 10.1016/s0300-483x(97)00170-4. [DOI] [PubMed] [Google Scholar]
  71. Supek F., Supekova L., Nelson H., Nelson N. Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol. 1997 Jan;200(Pt 2):321–330. doi: 10.1242/jeb.200.2.321. [DOI] [PubMed] [Google Scholar]
  72. Tabuchi M., Yoshimori T., Yamaguchi K., Yoshida T., Kishi F. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem. 2000 Jul 21;275(29):22220–22228. doi: 10.1074/jbc.M001478200. [DOI] [PubMed] [Google Scholar]
  73. Tallkvist J., Bowlus C. L., Lönnerdal B. DMT1 gene expression and cadmium absorption in human absorptive enterocytes. Toxicol Lett. 2001 Jun 20;122(2):171–177. doi: 10.1016/s0378-4274(01)00363-0. [DOI] [PubMed] [Google Scholar]
  74. Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
  75. Valentine J. S., Gralla E. B. Delivering copper inside yeast and human cells. Science. 1997 Oct 31;278(5339):817–818. doi: 10.1126/science.278.5339.817. [DOI] [PubMed] [Google Scholar]
  76. Vernhet L., Allain N., Payen L., Anger J. P., Guillouzo A., Fardel O. Resistance of human multidrug resistance-associated protein 1-overexpressing lung tumor cells to the anticancer drug arsenic trioxide. Biochem Pharmacol. 2001 Jun 1;61(11):1387–1391. doi: 10.1016/s0006-2952(01)00606-2. [DOI] [PubMed] [Google Scholar]
  77. Vulpe C. D., Kuo Y. M., Murphy T. L., Cowley L., Askwith C., Libina N., Gitschier J., Anderson G. J. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999 Feb;21(2):195–199. doi: 10.1038/5979. [DOI] [PubMed] [Google Scholar]
  78. Vulpe C. D., Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322. doi: 10.1146/annurev.nu.15.070195.001453. [DOI] [PubMed] [Google Scholar]
  79. Vulpe C., Levinson B., Whitney S., Packman S., Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan;3(1):7–13. doi: 10.1038/ng0193-7. [DOI] [PubMed] [Google Scholar]
  80. Yamaguchi Y., Heiny M. E., Suzuki M., Gitlin J. D. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14030–14035. doi: 10.1073/pnas.93.24.14030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Zhou B., Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7481–7486. doi: 10.1073/pnas.94.14.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry. 1994 Feb 22;33(7):1766–1770. doi: 10.1021/bi00173a020. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES