Abstract
My colleagues and I investigated the sites and mechanisms of aluminum (Al) and manganese (Mn) distribution through the blood-brain barrier (BBB). Microdialysis was used to sample non-protein-bound Al in the extracellular fluid (ECF) of blood (plasma) and brain. Brain ECF Al appearance after intravenous Al citrate injection was too rapid to attribute to diffusion or to transferrin-receptor-mediated endocytosis, suggesting another carrier-mediated process. The brain:blood ECF Al concentration ratio was 0.15 at constant blood and brain ECF Al concentrations, suggesting carrier-mediated brain Al efflux. Pharmacological manipulations suggested the efflux carrier might be a monocarboxylate transporter (MCT). However, the lack of Al (14)C-citrate uptake into rat erythrocytes suggested it is not a good substrate for isoform MCT1 or for the band 3 anion exchanger. Al (14)C-citrate uptake into murine-derived brain endothelial cells appeared to be carrier mediated, Na independent, pH independent, and energy dependent. Uptake was inhibited by substrate/inhibitors of the MCT and organic anion transporter families. Determination of (26)Al in rat brain at various times after intravenous (26)Al suggested a prolonged brain (26)Al half-life. It appears that Al transferrin and Al citrate cross the BBB by different mechanisms, that much of the Al entering brain ECF is rapidly effluxed, probably as Al citrate, but that some Al is retained for quite some time. Brain influx of the Mn(2+) ion and Mn citrate, determined with the in situ brain perfusion technique, was greater than that attributable to diffusion, suggesting carrier-mediated uptake. Mn citrate uptake was approximately 3-fold greater than the Mn(2+) ion, suggesting it is a primary Mn species entering the brain. After Mn(2+) ion, Mn citrate, or Mn transferrin injection into the brain, brain Mn efflux was not more rapid than that predicted from diffusion. The BBB permeation of Al and Mn is mediated by carriers that may help regulate their brain concentrations.
Full Text
The Full Text of this article is available as a PDF (149.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackley D. C., Yokel R. A. Aluminum citrate is transported from brain into blood via the monocarboxylic acid transporter located at the blood-brain barrier. Toxicology. 1997 Jun 27;120(2):89–97. doi: 10.1016/s0300-483x(97)03640-8. [DOI] [PubMed] [Google Scholar]
- Ackley D. C., Yokel R. A. Aluminum transport out of brain extracellular fluid is proton dependent and inhibited by mersalyl acid, suggesting mediation by the monocarboxylate transporter (MCT1). Toxicology. 1998 May 15;127(1-3):59–67. doi: 10.1016/s0300-483x(98)00037-7. [DOI] [PubMed] [Google Scholar]
- Akeson M. A., Munns D. N. Lipid bilayer permeation by neutral aluminum citrate and by three alpha-hydroxy carboxylic acids. Biochim Biophys Acta. 1989 Sep 4;984(2):200–206. doi: 10.1016/0005-2736(89)90217-4. [DOI] [PubMed] [Google Scholar]
- Allen D. D., Crooks P. A., Yokel R. A. 4-Trimethylammonium antipyrine: a quaternary ammonium nonradionuclide marker for blood-brain barrier integrity during in vivo microdialysis. J Pharmacol Toxicol Methods. 1992 Nov;28(3):129–135. doi: 10.1016/1056-8719(92)90074-b. [DOI] [PubMed] [Google Scholar]
- Allen D. D., Smith Q. R. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J Neurochem. 2001 Feb;76(4):1032–1041. doi: 10.1046/j.1471-4159.2001.00093.x. [DOI] [PubMed] [Google Scholar]
- Aschner M., Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull. 1994;33(3):345–349. doi: 10.1016/0361-9230(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Aschner M. Manganese: brain transport and emerging research needs. Environ Health Perspect. 2000 Jun;108 (Suppl 3):429–432. doi: 10.1289/ehp.00108s3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aschner M., Vrana K. E., Zheng W. Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology. 1999 Apr-Jun;20(2-3):173–180. [PubMed] [Google Scholar]
- Berend K., van der Voet G., Boer W. H. Acute aluminum encephalopathy in a dialysis center caused by a cement mortar water distribution pipe. Kidney Int. 2001 Feb;59(2):746–753. doi: 10.1046/j.1523-1755.2001.059002746.x. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997 Aug;69(2):443–454. doi: 10.1046/j.1471-4159.1997.69020443.x. [DOI] [PubMed] [Google Scholar]
- Brenneman K. A., Wong B. A., Buccellato M. A., Costa E. R., Gross E. A., Dorman D. C. Direct olfactory transport of inhaled manganese ((54)MnCl(2)) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol. 2000 Dec 15;169(3):238–248. doi: 10.1006/taap.2000.9073. [DOI] [PubMed] [Google Scholar]
- CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
- Crapper D. R., Krishnan S. S., Dalton A. J. Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science. 1973 May 4;180(4085):511–513. doi: 10.1126/science.180.4085.511. [DOI] [PubMed] [Google Scholar]
- Divine K. K., Lewis J. L., Grant P. G., Bench G. Quantitative particle-induced X-ray emission imaging of rat olfactory epithelium applied to the permeability of rat epithelium to inhaled aluminum. Chem Res Toxicol. 1999 Jul;12(7):575–581. doi: 10.1021/tx9900268. [DOI] [PubMed] [Google Scholar]
- Harris W. R., Chen Y. Electron paramagnetic resonance and difference ultraviolet studies of Mn2+ binding to serum transferrin. J Inorg Biochem. 1994 Apr;54(1):1–19. doi: 10.1016/0162-0134(94)85119-0. [DOI] [PubMed] [Google Scholar]
- Hudnell H. K. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology. 1999 Apr-Jun;20(2-3):379–397. [PubMed] [Google Scholar]
- Iregren A. Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests. Neurotoxicology. 1999 Apr-Jun;20(2-3):315–323. [PubMed] [Google Scholar]
- Kakee A., Terasaki T., Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther. 1996 Jun;277(3):1550–1559. [PubMed] [Google Scholar]
- Kakee A., Terasaki T., Sugiyama Y. Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther. 1997 Dec;283(3):1018–1025. [PubMed] [Google Scholar]
- Levin V. A. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980 Jun;23(6):682–684. doi: 10.1021/jm00180a022. [DOI] [PubMed] [Google Scholar]
- Murphy V. A., Wadhwani K. C., Smith Q. R., Rapoport S. I. Saturable transport of manganese(II) across the rat blood-brain barrier. J Neurochem. 1991 Sep;57(3):948–954. doi: 10.1111/j.1471-4159.1991.tb08242.x. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998 May;70(5):1781–1792. doi: 10.1046/j.1471-4159.1998.70051781.x. [DOI] [PubMed] [Google Scholar]
- Perl D. P., Good P. F. Uptake of aluminium into central nervous system along nasal-olfactory pathways. Lancet. 1987 May 2;1(8540):1028–1028. doi: 10.1016/s0140-6736(87)92288-4. [DOI] [PubMed] [Google Scholar]
- Rennels M. L., Gregory T. F., Blaumanis O. R., Fujimoto K., Grady P. A. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985 Feb 4;326(1):47–63. doi: 10.1016/0006-8993(85)91383-6. [DOI] [PubMed] [Google Scholar]
- Takasato Y., Rapoport S. I., Smith Q. R. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984 Sep;247(3 Pt 2):H484–H493. doi: 10.1152/ajpheart.1984.247.3.H484. [DOI] [PubMed] [Google Scholar]
- Tjälve H., Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology. 1999 Apr-Jun;20(2-3):181–195. [PubMed] [Google Scholar]
- Triguero D., Buciak J., Pardridge W. M. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem. 1990 Jun;54(6):1882–1888. doi: 10.1111/j.1471-4159.1990.tb04886.x. [DOI] [PubMed] [Google Scholar]
- Yokel R. A., Lidums V., McNamara P. J., Ungerstedt U. Aluminum distribution into brain and liver of rats and rabbits following intravenous aluminum lactate or citrate: a microdialysis study. Toxicol Appl Pharmacol. 1991 Jan;107(1):153–163. doi: 10.1016/0041-008x(91)90339-g. [DOI] [PubMed] [Google Scholar]
- Yokel R. A., McNamara P. J. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol. 2001 Apr;88(4):159–167. doi: 10.1034/j.1600-0773.2001.d01-98.x. [DOI] [PubMed] [Google Scholar]
- Yokel R. A., Rhineheimer S. S., Sharma P., Elmore D., McNamara P. J. Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single (26)Al exposure. Toxicol Sci. 2001 Nov;64(1):77–82. doi: 10.1093/toxsci/64.1.77. [DOI] [PubMed] [Google Scholar]
- Yokel R. A. The toxicology of aluminum in the brain: a review. Neurotoxicology. 2000 Oct;21(5):813–828. [PubMed] [Google Scholar]
- Yokel Robert A., Wilson Marieangela, Harris Wesley R., Halestrap Andrew P. Aluminum citrate uptake by immortalized brain endothelial cells: implications for its blood-brain barrier transport. Brain Res. 2002 Mar 15;930(1-2):101–110. doi: 10.1016/s0006-8993(02)02234-5. [DOI] [PubMed] [Google Scholar]
