Abstract
Nickel has been shown to be an essential trace element involved in the metabolism of several species of bacteria, archea, and plants. In these organisms, nickel is involved in enzymes that catalyze both non-redox (e.g., urease, glyoxalase I) and redox (e.g., hydrogenase, carbon monoxide dehydrogenase, superoxide dismutase) reactions, and proteins involved in the transport, storage, metallocenter assembly, and regulation of nickel concentration have evolved. Studies of structure/function relationships in nickel biochemistry reveal that cysteine ligands are used to stabilize the Ni(III/II) redox couple. Certain nickel compounds have also been shown to be potent human carcinogens. A likely target for carcinogenic nickel is nuclear histone proteins. Here we present X-ray absorption spectroscopic studies of a model Ni peptide designed to help characterize the structure of the nickel complexes formed with histones and place them in the context of nickel structure/function relationships, to gain insights into the molecular mechanism of nickel carcinogenesis.
Full Text
The Full Text of this article is available as a PDF (200.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arents G., Burlingame R. W., Wang B. C., Love W. E., Moudrianakis E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. doi: 10.1073/pnas.88.22.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arents G., Moudrianakis E. N. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11170–11174. doi: 10.1073/pnas.92.24.11170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bal W., Lukszo J., Bialkowski K., Kasprzak K. S. Interactions of Nickel(II) with histones: interactions of Nickel(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a peptide modeling the potential metal binding site in the "C-Tail" region of histone H2A. Chem Res Toxicol. 1998 Sep;11(9):1014–1023. doi: 10.1021/tx980051y. [DOI] [PubMed] [Google Scholar]
- Bal W., Lukszo J., Jezowska-Bojczuk M., Kasprzak K. S. Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3. Chem Res Toxicol. 1995 Jul-Aug;8(5):683–692. doi: 10.1021/tx00047a007. [DOI] [PubMed] [Google Scholar]
- Bal W., Lukszo J., Kasprazak K. S. Interactions of nickel(II) with histones: enhancement of 2'-deoxyguanosine oxidation by Ni(II) complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3. Chem Res Toxicol. 1996 Mar;9(2):535–540. doi: 10.1021/tx950157i. [DOI] [PubMed] [Google Scholar]
- Bernhard M., Buhrke T., Bleijlevens B., De Lacey A. L., Fernandez V. M., Albracht S. P., Friedrich B. The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem. 2001 Feb 16;276(19):15592–15597. doi: 10.1074/jbc.M009802200. [DOI] [PubMed] [Google Scholar]
- Brayman T. G., Hausinger R. P. Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus. J Bacteriol. 1996 Sep;178(18):5410–5416. doi: 10.1128/jb.178.18.5410-5416.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broday L., Peng W., Kuo M. H., Salnikow K., Zoroddu M., Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000 Jan 15;60(2):238–241. [PubMed] [Google Scholar]
- Charon M. H., Wu L. F., Piras C., de Pina K., Mandrand-Berthelot M. A., Fontecilla-Camps J. C. Crystallization and preliminary X-ray diffraction study of the nickel-binding protein NikA of Escherichia coli. J Mol Biol. 1994 Oct 21;243(2):353–355. doi: 10.1006/jmbi.1994.1661. [DOI] [PubMed] [Google Scholar]
- Chivers P. T., Sauer R. T. NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci. 1999 Nov;8(11):2494–2500. doi: 10.1110/ps.8.11.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chivers P. T., Sauer R. T. Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem. 2000 Jun 30;275(26):19735–19741. doi: 10.1074/jbc.M002232200. [DOI] [PubMed] [Google Scholar]
- Choudhury S. B., Lee J. W., Davidson G., Yim Y. I., Bose K., Sharma M. L., Kang S. O., Cabelli D. E., Maroney M. J. Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry. 1999 Mar 23;38(12):3744–3752. doi: 10.1021/bi982537j. [DOI] [PubMed] [Google Scholar]
- Colpas G. J., Brayman T. G., Ming L. J., Hausinger R. P. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE. Biochemistry. 1999 Mar 30;38(13):4078–4088. doi: 10.1021/bi982435t. [DOI] [PubMed] [Google Scholar]
- Costa M., Zhuang Z., Huang X., Cosentino S., Klein C. B., Salnikow K. Molecular mechanisms of nickel carcinogenesis. Sci Total Environ. 1994 Jun 6;148(2-3):191–199. doi: 10.1016/0048-9697(94)90396-4. [DOI] [PubMed] [Google Scholar]
- Dai Y., Pochapsky T. C., Abeles R. H. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae. Biochemistry. 2001 May 29;40(21):6379–6387. doi: 10.1021/bi010110y. [DOI] [PubMed] [Google Scholar]
- Davidson G., Choudhury S. B., Gu Z., Bose K., Roseboom W., Albracht S. P., Maroney M. J. Structural examination of the nickel site in chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding. Biochemistry. 2000 Jun 27;39(25):7468–7479. doi: 10.1021/bi000300t. [DOI] [PubMed] [Google Scholar]
- Davidson G., Clugston S. L., Honek J. F., Maroney M. J. An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications. Biochemistry. 2001 Apr 17;40(15):4569–4582. doi: 10.1021/bi0018537. [DOI] [PubMed] [Google Scholar]
- Davidson G., Clugston S. L., Honek J. F., Maroney M. J. XAS investigation of the nickel active site structure in Escherichia coli glyoxalase I. Inorg Chem. 2000 Jul 10;39(14):2962–2963. doi: 10.1021/ic0001208. [DOI] [PubMed] [Google Scholar]
- De Pina K., Desjardin V., Mandrand-Berthelot M. A., Giordano G., Wu L. F. Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol. 1999 Jan;181(2):670–674. doi: 10.1128/jb.181.2.670-674.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobbek H., Svetlitchnyi V., Gremer L., Huber R., Meyer O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science. 2001 Aug 17;293(5533):1281–1285. doi: 10.1126/science.1061500. [DOI] [PubMed] [Google Scholar]
- Drennan C. L., Heo J., Sintchak M. D., Schreiter E., Ludden P. W. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci U S A. 2001 Oct 2;98(21):11973–11978. doi: 10.1073/pnas.211429998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eitinger T., Mandrand-Berthelot M. A. Nickel transport systems in microorganisms. Arch Microbiol. 2000 Jan;173(1):1–9. doi: 10.1007/s002030050001. [DOI] [PubMed] [Google Scholar]
- He M. M., Clugston S. L., Honek J. F., Matthews B. W. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation. Biochemistry. 2000 Aug 1;39(30):8719–8727. doi: 10.1021/bi000856g. [DOI] [PubMed] [Google Scholar]
- Jabri E., Carr M. B., Hausinger R. P., Karplus P. A. The crystal structure of urease from Klebsiella aerogenes. Science. 1995 May 19;268(5213):998–1004. [PubMed] [Google Scholar]
- Kleihues L., Lenz O., Bernhard M., Buhrke T., Friedrich B. The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol. 2000 May;182(10):2716–2724. doi: 10.1128/jb.182.10.2716-2724.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. H., Pankratz H. S., Wang S., Scott R. A., Finnegan M. G., Johnson M. K., Ippolito J. A., Christianson D. W., Hausinger R. P. Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Protein Sci. 1993 Jun;2(6):1042–1052. doi: 10.1002/pro.5560020617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Y. W., Klein C. B., Kargacin B., Salnikow K., Kitahara J., Dowjat K., Zhitkovich A., Christie N. T., Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol. 1995 May;15(5):2547–2557. doi: 10.1128/mcb.15.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
- Navarro C., Wu L. F., Mandrand-Berthelot M. A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol. 1993 Sep;9(6):1181–1191. doi: 10.1111/j.1365-2958.1993.tb01247.x. [DOI] [PubMed] [Google Scholar]
- Oller A. R., Costa M., Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol. 1997 Mar;143(1):152–166. doi: 10.1006/taap.1996.8075. [DOI] [PubMed] [Google Scholar]
- Olson J. W., Fu C., Maier R. J. The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase. Mol Microbiol. 1997 Apr;24(1):119–128. doi: 10.1046/j.1365-2958.1997.3251690.x. [DOI] [PubMed] [Google Scholar]
- Sawers R. G., Ballantine S. P., Boxer D. H. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol. 1985 Dec;164(3):1324–1331. doi: 10.1128/jb.164.3.1324-1331.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song H. K., Mulrooney S. B., Huber R., Hausinger R. P. Crystal structure of Klebsiella aerogenes UreE, a nickel-binding metallochaperone for urease activation. J Biol Chem. 2001 Oct 8;276(52):49359–49364. doi: 10.1074/jbc.M108619200. [DOI] [PubMed] [Google Scholar]
- Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995 Feb 16;373(6515):580–587. doi: 10.1038/373580a0. [DOI] [PubMed] [Google Scholar]
- Watt R. K., Ludden P. W. The identification, purification, and characterization of CooJ. A nickel-binding protein that is co-regulated with the Ni-containing CO dehydrogenase from Rhodospirillum rubrum. J Biol Chem. 1998 Apr 17;273(16):10019–10025. doi: 10.1074/jbc.273.16.10019. [DOI] [PubMed] [Google Scholar]
- Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
- Yamaguchi K., Cosper N. J., Stålhandske C., Scott R. A., Pearson M. A., Karplus P. A., Hausinger R. P. Characterization of metal-substituted Klebsiella aerogenes urease. J Biol Inorg Chem. 1999 Aug;4(4):468–477. doi: 10.1007/s007750050333. [DOI] [PubMed] [Google Scholar]
- Zoroddu M. A., Kowalik-Jankowska T., Kozlowski H., Molinari H., Salnikow K., Broday L., Costa M. Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail. Biochim Biophys Acta. 2000 Jul 3;1475(2):163–168. doi: 10.1016/s0304-4165(00)00066-0. [DOI] [PubMed] [Google Scholar]
- de Pina K., Navarro C., McWalter L., Boxer D. H., Price N. C., Kelly S. M., Mandrand-Berthelot M. A., Wu L. F. Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem. 1995 Feb 1;227(3):857–865. doi: 10.1111/j.1432-1033.1995.tb20211.x. [DOI] [PubMed] [Google Scholar]
- von Holt C., Brandt W. F., Greyling H. J., Lindsey G. G., Retief J. D., Rodrigues J. D., Schwager S., Sewell B. T. Isolation and characterization of histones. Methods Enzymol. 1989;170:431–523. doi: 10.1016/0076-6879(89)70061-6. [DOI] [PubMed] [Google Scholar]
