Abstract
In vitro work in this laboratory has identified new DNA lesions resulting from further oxidation of a common biomarker of oxidative damage, 8-oxo-7,8-dihydroguanine (OG). The major product of oxidation of OG in a nucleoside, nucleotide, or single-stranded oligodeoxynucleotide using metal ions that act as one-electron oxidants is the new nucleoside derivative spiroiminodihydantoin (Sp). In duplex DNA an equilibrating mixture of two isomeric products, guanidinohydantoin (Gh) and iminoallantoin (Ia), is produced. These products are also formed by the overall four-electron oxidation of guanosine by photochemical processes involving O(2). DNA template strands containing either Sp or Gh/Ia generally acted as a block to DNA synthesis with the Klenow exo(-) fragment of pol I. However, when nucleotide insertion did occur opposite the lesions, only 2'-deoxyadenosine 5-triphosphate and 2'-deoxyguanine 5-triphosphate were used for primer extension. The Escherichia coli DNA repair enzyme Fpg was able to remove the Sp and Gh/Ia lesions from duplex DNA substrates, although the efficiency was depended on the base opposite the lesion.
Full Text
The Full Text of this article is available as a PDF (176.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burrows Cynthia J., Muller James G. Oxidative Nucleobase Modifications Leading to Strand Scission. Chem Rev. 1998 May 7;98(3):1109–1152. doi: 10.1021/cr960421s. [DOI] [PubMed] [Google Scholar]
- Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J. P., Ravanat J. L., Sauvaigo S. Hydroxyl radicals and DNA base damage. Mutat Res. 1999 Mar 8;424(1-2):9–21. doi: 10.1016/s0027-5107(99)00004-4. [DOI] [PubMed] [Google Scholar]
- Cooper P. K., Nouspikel T., Clarkson S. G., Leadon S. A. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997 Feb 14;275(5302):990–993. doi: 10.1126/science.275.5302.990. [DOI] [PubMed] [Google Scholar]
- David Sheila S., Williams Scott D. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair. Chem Rev. 1998 May 7;98(3):1221–1262. doi: 10.1021/cr980321h. [DOI] [PubMed] [Google Scholar]
- Duarte V., Gasparutto D., Jaquinod M., Cadet J. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage using modified oligonucleotides. Nucleic Acids Res. 2000 Apr 1;28(7):1555–1563. doi: 10.1093/nar/28.7.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duarte V., Gasparutto D., Jaquinod M., Ravanat J., Cadet J. Repair and mutagenic potential of oxaluric acid, a major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine. Chem Res Toxicol. 2001 Jan;14(1):46–53. doi: 10.1021/tx0001629. [DOI] [PubMed] [Google Scholar]
- Duarte V., Muller J. G., Burrows C. J. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res. 1999 Jan 15;27(2):496–502. doi: 10.1093/nar/27.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M. F., Cai H., Bloom L. B., Eritja R. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci. 1994 Jul 29;726:132–143. doi: 10.1111/j.1749-6632.1994.tb52804.x. [DOI] [PubMed] [Google Scholar]
- Guan Y., Manuel R. C., Arvai A. S., Parikh S. S., Mol C. D., Miller J. H., Lloyd S., Tainer J. A. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Biol. 1998 Dec;5(12):1058–1064. doi: 10.1038/4168. [DOI] [PubMed] [Google Scholar]
- Hazra T. K., Muller J. G., Manuel R. C., Burrows C. J., Lloyd R. S., Mitra S. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Res. 2001 May 1;29(9):1967–1974. doi: 10.1093/nar/29.9.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson Paul T., Delaney James C., Gu Feng, Tannenbaum Steven R., Essigmann John M. Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry. 2002 Jan 22;41(3):914–921. doi: 10.1021/bi0156355. [DOI] [PubMed] [Google Scholar]
- Johnson F., Huang C. Y., Yu P. L. Synthetic and oxidative studies on 8-(arylamino)-2'-deoxyguanosine and -guanosine derivatives. Environ Health Perspect. 1994 Oct;102 (Suppl 6):143–149. doi: 10.1289/ehp.94102s6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leipold M. D., Muller J. G., Burrows C. J., David S. S. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry. 2000 Dec 5;39(48):14984–14992. doi: 10.1021/bi0017982. [DOI] [PubMed] [Google Scholar]
- Loeb K. R., Loeb L. A. Significance of multiple mutations in cancer. Carcinogenesis. 2000 Mar;21(3):379–385. doi: 10.1093/carcin/21.3.379. [DOI] [PubMed] [Google Scholar]
- Lu R., Nash H. M., Verdine G. L. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol. 1997 Jun 1;7(6):397–407. doi: 10.1016/s0960-9822(06)00187-4. [DOI] [PubMed] [Google Scholar]
- Luo W., Muller J. G., Burrows C. J. The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org Lett. 2001 Sep 6;3(18):2801–2804. doi: 10.1021/ol0161763. [DOI] [PubMed] [Google Scholar]
- Luo W., Muller J. G., Rachlin E. M., Burrows C. J. Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem Res Toxicol. 2001 Jul;14(7):927–938. doi: 10.1021/tx010072j. [DOI] [PubMed] [Google Scholar]
- Luo W., Muller J. G., Rachlin E. M., Burrows C. J. Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-Oxo-7,8-dihydroguanosine. Org Lett. 2000 Mar 9;2(5):613–616. doi: 10.1021/ol9913643. [DOI] [PubMed] [Google Scholar]
- Martin-Bertram H. S1-sensitive sites in DNA after gamma-irradiation. Biochim Biophys Acta. 1981 Feb 26;652(2):261–265. doi: 10.1016/0005-2787(81)90115-5. [DOI] [PubMed] [Google Scholar]
- McBride T. J., Preston B. D., Loeb L. A. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry. 1991 Jan 8;30(1):207–213. doi: 10.1021/bi00215a030. [DOI] [PubMed] [Google Scholar]
- Michaels M. L., Tchou J., Grollman A. P., Miller J. H. A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry. 1992 Nov 17;31(45):10964–10968. doi: 10.1021/bi00160a004. [DOI] [PubMed] [Google Scholar]
- Milligan J. R., Aguilera J. A., Wu C. C., Paglinawan R. A., Nguyen T. T., Wu D., Ward J. F. Effect of hydroxyl radical scavenging capacity on clustering of DNA damage. Radiat Res. 1997 Oct;148(4):325–329. [PubMed] [Google Scholar]
- Muller J. G., Duarte V., Hickerson R. P., Burrows C. J. Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7, 8-dihydro-8-oxoadenine via oxidation by Ir (IV). Nucleic Acids Res. 1998 May 1;26(9):2247–2249. doi: 10.1093/nar/26.9.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niles J. C., Wishnok J. S., Tannenbaum S. R. A novel nitration product formed during the reaction of peroxynitrite with 2',3',5'-tri-O-acetyl-7,8-dihydro-8-oxoguanosine: N-nitro-N'-[1-(2,3,5-tri-O-acetyl-beta-D-erythro-pentofuranosyl)- 2, 4-dioxoimidazolidin-5-ylidene]guanidine. Chem Res Toxicol. 2000 May;13(5):390–396. doi: 10.1021/tx0000318. [DOI] [PubMed] [Google Scholar]
- Núez M. E., Holmquist G. P., Barton J. K. Evidence for DNA charge transport in the nucleus. Biochemistry. 2001 Oct 23;40(42):12465–12471. doi: 10.1021/bi011560t. [DOI] [PubMed] [Google Scholar]
- Rodriguez H., Valentine M. R., Holmquist G. P., Akman S. A., Termini J. Mapping of peroxyl radical induced damage on genomic DNA. Biochemistry. 1999 Dec 14;38(50):16578–16588. doi: 10.1021/bi9918994. [DOI] [PubMed] [Google Scholar]
- Shibutani S., Bodepudi V., Johnson F., Grollman A. P. Translesional synthesis on DNA templates containing 8-oxo-7,8-dihydrodeoxyadenosine. Biochemistry. 1993 May 4;32(17):4615–4621. doi: 10.1021/bi00068a019. [DOI] [PubMed] [Google Scholar]
- Sugden K. D., Campo C. K., Martin B. D. Direct oxidation of guanine and 7,8-dihydro-8-oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for chromate genotoxicity. Chem Res Toxicol. 2001 Sep;14(9):1315–1322. doi: 10.1021/tx010088+. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Masuda M., Friesen M. D., Ohshima H. Formation of spiroiminodihydantoin nucleoside by reaction of 8-oxo-7,8-dihydro-2'-deoxyguanosine with hypochlorous acid or a myeloperoxidase-H(2)O(2)-Cl(-) system. Chem Res Toxicol. 2001 Sep;14(9):1163–1169. doi: 10.1021/tx010024z. [DOI] [PubMed] [Google Scholar]
- Torres M. C., Varaprasad C. V., Johnson F., Iden C. R. Formation of s-triazines during aerial oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in concentrated ammonia. Carcinogenesis. 1999 Jan;20(1):167–172. doi: 10.1093/carcin/20.1.167. [DOI] [PubMed] [Google Scholar]
- Wang D., Kreutzer D. A., Essigmann J. M. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res. 1998 May 25;400(1-2):99–115. doi: 10.1016/s0027-5107(98)00066-9. [DOI] [PubMed] [Google Scholar]
- Yanagawa H., Ogawa Y., Ueno M. Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J Biol Chem. 1992 Jul 5;267(19):13320–13326. [PubMed] [Google Scholar]